|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: t5-small-codesearchnet-multilang-python-java |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-codesearchnet-multilang-python-java |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7015 |
|
- Bleu: 0.0045 |
|
- Rouge1: 0.2194 |
|
- Rouge2: 0.0741 |
|
- Avg Length: 15.9976 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Avg Length | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:| |
|
| No log | 1.0 | 375 | 0.9005 | 0.0013 | 0.1397 | 0.0334 | 16.3976 | |
|
| 2.3568 | 2.0 | 750 | 0.8036 | 0.0023 | 0.1737 | 0.0526 | 15.8896 | |
|
| 0.7576 | 3.0 | 1125 | 0.7584 | 0.0021 | 0.1856 | 0.0558 | 15.3102 | |
|
| 0.6778 | 4.0 | 1500 | 0.7298 | 0.0024 | 0.1922 | 0.0597 | 15.3544 | |
|
| 0.6778 | 5.0 | 1875 | 0.7114 | 0.0037 | 0.2114 | 0.0704 | 15.7588 | |
|
| 0.6206 | 6.0 | 2250 | 0.6949 | 0.0039 | 0.2093 | 0.0729 | 15.8088 | |
|
| 0.5856 | 7.0 | 2625 | 0.6927 | 0.0042 | 0.2143 | 0.0711 | 16.5838 | |
|
| 0.5447 | 8.0 | 3000 | 0.6867 | 0.005 | 0.2151 | 0.0717 | 17.2174 | |
|
| 0.5447 | 9.0 | 3375 | 0.6895 | 0.0043 | 0.2179 | 0.0736 | 16.1068 | |
|
| 0.5117 | 10.0 | 3750 | 0.6876 | 0.0038 | 0.2229 | 0.0777 | 15.5094 | |
|
| 0.4892 | 11.0 | 4125 | 0.6800 | 0.0047 | 0.2201 | 0.0783 | 16.6902 | |
|
| 0.4629 | 12.0 | 4500 | 0.6903 | 0.0047 | 0.2203 | 0.0771 | 16.7658 | |
|
| 0.4629 | 13.0 | 4875 | 0.6947 | 0.0056 | 0.227 | 0.0777 | 16.8108 | |
|
| 0.4355 | 14.0 | 5250 | 0.6999 | 0.0027 | 0.2028 | 0.0715 | 15.6776 | |
|
| 0.418 | 15.0 | 5625 | 0.7015 | 0.0045 | 0.2194 | 0.0741 | 15.9976 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|