roberta-base-ner-2 / README.md
lltala's picture
End of training
404de66
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: roberta-base-ner-2
    results: []

roberta-base-ner-2

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0707
  • Overall Precision: 0.7602
  • Overall Recall: 0.6756
  • Overall F1: 0.7154
  • Org Precision: 0.7796
  • Org Recall: 0.6360
  • Org F1: 0.7005
  • Per Precision: 0.8989
  • Per Recall: 0.9524
  • Per F1: 0.9249
  • Loc Precision: 0.5702
  • Loc Recall: 0.7113
  • Loc F1: 0.6330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Org Precision Org Recall Org F1 Per Precision Per Recall Per F1 Loc Precision Loc Recall Loc F1
No log 1.0 53 0.1109 0.4123 0.3852 0.3983 0.4138 0.4889 0.4482 0.0 0.0 0.0 0.0 0.0 0.0
No log 2.0 106 0.0746 0.7003 0.6429 0.6703 0.7180 0.6166 0.6635 0.8571 0.9286 0.8914 0.4870 0.5773 0.5283
No log 3.0 159 0.0707 0.7602 0.6756 0.7154 0.7796 0.6360 0.7005 0.8989 0.9524 0.9249 0.5702 0.7113 0.6330
No log 4.0 212 0.0725 0.7870 0.6967 0.7391 0.7896 0.6523 0.7144 0.9425 0.9762 0.9591 0.6549 0.7629 0.7048
No log 5.0 265 0.0738 0.7874 0.6897 0.7353 0.7909 0.6464 0.7114 0.9425 0.9762 0.9591 0.6486 0.7423 0.6923

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1