doberst commited on
Commit
4e1e91d
1 Parent(s): a4360d1

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +225 -0
  2. config.json +83 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+ BLING-1b-0.1 is the first model release in the BLING ("Best Little Instruction-following No-GPU-required") model series.
10
+
11
+ BLING models are designed as custom instruct-following laptop-effective GPT decoder-based models (~1B-2.7B parameters). BLING models are currently built on top of Pythia (GPTNeox architecture) base models and other Apache 2.0-licensed GPT-compatible models with primary focus on 'little' models in the range of 1B, 1.3-1.4B, and 2.7B parameters. (Note: in our testing, we have seen relatively limited success with instruct-following models below <1B parameters.)
12
+
13
+ BLING models are fine-tuned with distilled high-quality custom instruct datasets, targeted at a specific subset of instruct tasks with the objective of providing a high-quality Instruct model that can be run entirely without a GPU server, with good quality instruct-following capability that can be loaded and run locally on a laptop.
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+
19
+ <!-- Provide a longer summary of what this model is. -->
20
+
21
+ - **Developed by:** llmware
22
+ - **Shared by [optional]:** Darren Oberst
23
+ - **Model type:** GPTNeoX instruct-trained decoder
24
+ - **Language(s) (NLP):** English
25
+ - **License:** Apache 2.0
26
+ - **Finetuned from model [optional]:** EleutherAI/Pythia-1b-deduped
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ The intended use of BLING models is two-fold:
41
+
42
+ 1. Provide a high-quality Instruct models that can run on a laptop for local testing. We have found it extremely useful when building a
43
+ proof-of-concept, or working with sensitive enterprise data that must be closely guarded, especially in RAG use cases.
44
+
45
+ 2. Push the state of the art for smaller Instruct-following models in the 1B - 7B range.
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ BLING is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
52
+ legal and regulatory industries. BLING is intended to be an experimental series of little instruct models targeted as specific
53
+ RAG automation tasks with complex information sources. Rather than try to be "all things to all people," BLING models try to focus
54
+ on a narrower set of Instructions more suitable to a ~1B parameter GPT model.
55
+
56
+ BLING is ideal for rapid prototyping, testing, and the ability to perform an end-to-end workflow locally on a laptop without
57
+ having to send sensitive information over an Internet-based API.
58
+
59
+
60
+ [More Information Needed]
61
+
62
+ ### Downstream Use [optional]
63
+
64
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Out-of-Scope Use
69
+
70
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
71
+
72
+ 1. BLING is not designed for 'chat-bot' or 'consumer-oriented' applications.
73
+
74
+ 2. BLING is not optimal for most production applications, other than simple and highly specific use cases.
75
+
76
+
77
+ [More Information Needed]
78
+
79
+ ## Bias, Risks, and Limitations
80
+
81
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
82
+
83
+ BLING has not been designed for end consumer-oriented applications, and there has been any focus in training on important safeguards to
84
+ mitigate potential bias and safety. We would strongly discourage any use of BLING for any 'chatbot' use case.
85
+
86
+ [More Information Needed]
87
+
88
+ ### Recommendations
89
+
90
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
91
+
92
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
93
+
94
+ ## How to Get Started with the Model
95
+
96
+ Use the code below to get started with the model.
97
+
98
+ [More Information Needed]
99
+
100
+ ## Training Details
101
+
102
+ ### Training Data
103
+
104
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ### Training Procedure
109
+
110
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
111
+
112
+ #### Preprocessing [optional]
113
+
114
+ [More Information Needed]
115
+
116
+
117
+ #### Training Hyperparameters
118
+
119
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
120
+
121
+ #### Speeds, Sizes, Times [optional]
122
+
123
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ## Evaluation
128
+
129
+ <!-- This section describes the evaluation protocols and provides the results. -->
130
+
131
+ ### Testing Data, Factors & Metrics
132
+
133
+ #### Testing Data
134
+
135
+ <!-- This should link to a Data Card if possible. -->
136
+
137
+ [More Information Needed]
138
+
139
+ #### Factors
140
+
141
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
142
+
143
+ [More Information Needed]
144
+
145
+ #### Metrics
146
+
147
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
148
+
149
+ [More Information Needed]
150
+
151
+ ### Results
152
+
153
+ [More Information Needed]
154
+
155
+ #### Summary
156
+
157
+
158
+
159
+ ## Model Examination [optional]
160
+
161
+ <!-- Relevant interpretability work for the model goes here -->
162
+
163
+ [More Information Needed]
164
+
165
+ ## Environmental Impact
166
+
167
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
168
+
169
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
170
+
171
+ - **Hardware Type:** [More Information Needed]
172
+ - **Hours used:** [More Information Needed]
173
+ - **Cloud Provider:** [More Information Needed]
174
+ - **Compute Region:** [More Information Needed]
175
+ - **Carbon Emitted:** [More Information Needed]
176
+
177
+ ## Technical Specifications [optional]
178
+
179
+ ### Model Architecture and Objective
180
+
181
+ [More Information Needed]
182
+
183
+ ### Compute Infrastructure
184
+
185
+ [More Information Needed]
186
+
187
+ #### Hardware
188
+
189
+ [More Information Needed]
190
+
191
+ #### Software
192
+
193
+ [More Information Needed]
194
+
195
+ ## Citation [optional]
196
+
197
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
198
+
199
+ **BibTeX:**
200
+
201
+ [More Information Needed]
202
+
203
+ **APA:**
204
+
205
+ [More Information Needed]
206
+
207
+ ## Glossary [optional]
208
+
209
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
210
+
211
+ [More Information Needed]
212
+
213
+ ## More Information [optional]
214
+
215
+ [More Information Needed]
216
+
217
+ ## Model Card Authors [optional]
218
+
219
+ [More Information Needed]
220
+
221
+ ## Model Card Contact
222
+
223
+ [More Information Needed]
224
+
225
+
config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ { "model_name": "bling-1.4b-0.1",
2
+ "description": "Instruct train fine-tuning using distilled knowledge based critical reading tasks training dataset",
3
+ "training_timestamp": "Mon Sep 25 20:31:36 2023",
4
+ "training_comments": "pythia-1.4b-v1.0",
5
+ "_name_or_path": "EleutherAI/pythia-1.4b-v0",
6
+ "transformers_version": "4.28.1",
7
+ "model_type": "gpt_neox",
8
+ "vocab_size": 50304,
9
+ "max_position_embeddings": 2048,
10
+ "hidden_size": 2048,
11
+ "num_hidden_layers": 24,
12
+ "num_attention_heads": 16,
13
+ "intermediate_size": 8192,
14
+ "hidden_act": "gelu",
15
+ "rotary_pct": 0.25,
16
+ "rotary_emb_base": 10000,
17
+ "initializer_range": 0.02,
18
+ "layer_norm_eps": 1e-05,
19
+ "return_dict": true,
20
+ "output_hidden_states": false,
21
+ "output_attentions": false,
22
+ "torchscript": false,
23
+ "torch_dtype": "float16",
24
+ "use_bfloat16": false,
25
+ "tf_legacy_loss": false,
26
+ "pruned_heads": {},
27
+ "tie_word_embeddings": false,
28
+ "is_encoder_decoder": false,
29
+ "is_decoder": false,
30
+ "cross_attention_hidden_size": null,
31
+ "add_cross_attention": false,
32
+ "tie_encoder_decoder": false,
33
+ "max_length": 20,
34
+ "min_length": 0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "num_beams": 1,
38
+ "num_beam_groups": 1,
39
+ "diversity_penalty": 0.0,
40
+ "temperature": 1.0,
41
+ "top_k": 50,
42
+ "top_p": 1.0,
43
+ "typical_p": 1.0,
44
+ "repetition_penalty": 1.0,
45
+ "length_penalty": 1.0,
46
+ "no_repeat_ngram_size": 0,
47
+ "encoder_no_repeat_ngram_size": 0,
48
+ "bad_words_ids": null,
49
+ "num_return_sequences": 1,
50
+ "chunk_size_feed_forward": 0,
51
+ "output_scores": false,
52
+ "return_dict_in_generate": false,
53
+ "forced_bos_token_id": null,
54
+ "forced_eos_token_id": null,
55
+ "remove_invalid_values": false,
56
+ "exponential_decay_length_penalty": null,
57
+ "suppress_tokens": null,
58
+ "begin_suppress_tokens": null,
59
+ "architectures": [
60
+ "GPTNeoXForCausalLM"
61
+ ],
62
+ "finetuning_task": null,
63
+ "id2label": {
64
+ "0": "LABEL_0",
65
+ "1": "LABEL_1"
66
+ },
67
+ "label2id": {
68
+ "LABEL_0": 0,
69
+ "LABEL_1": 1
70
+ },
71
+ "tokenizer_class": null,
72
+ "prefix": null,
73
+ "bos_token_id": 0,
74
+ "pad_token_id": null,
75
+ "eos_token_id": 0,
76
+ "sep_token_id": null,
77
+ "decoder_start_token_id": null,
78
+ "task_specific_params": null,
79
+ "problem_type": null,
80
+ "use_cache": true,
81
+ "use_parallel_residual": true,
82
+ "trained": "custom training"
83
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3795a5dc929c15d452aff5153107149be43e16f25d23623c8a958287fb8f6ba6
3
+ size 5759395105
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff