metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3820
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: samsung ms23h3125ak/ms23h3125ak
sentences:
- Canon EOS M50 + 15-45mm IS STM
- Bosch KIV32X23GB Integrated
- Indesit DIF04B1 Integrated
- Samsung MS23H3125AK Black
- Samsung RB29FWRNDBC Black
- Hisense RQ560N4WC1
- Samsung UE32M5520
- Nikon CoolPix A10
- Hotpoint RPD10457JKK
- HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
- Indesit DFG15B1S Silver
- Samsung WW10M86DQOO
- Bosch SMV46MX00G Integrated
- LG 49SK8100PLA
- Nikon CoolPix W300
- AMD Ryzen 3 1300X 3.5GHz Box
- LG OLED65B8PLA
- Samsung Galaxy J5 SM-J530
- LG 65UK6500PLA
- Siemens WM14T391GB
- Apple iPhone SE 32GB
- source_sentence: lg oled65c8pla
sentences:
- Beko LCSM1545W White
- Bosch KAN90VI20G Stainless Steel
- Canon PowerShot SX60 HS
- Hotpoint WMAQF621P
- Apple iPhone 7 Plus 32GB
- Hotpoint FFU4DK Black
- Fujifilm Finepix XP130
- Bosch WAN24108GB
- LG OLED65E8PLA
- Intel Core i7-8700K 3.7GHz Box
- Fujifilm X-Pro2
- LG OLED65C8PLA
- Samsung UE55NU8000
- LG 49LK5900PLA
- Apple iPhone 8 64GB
- Samsung UE65NU7100
- AEG L6FBG942R
- AMD Ryzen 7 1700 3GHz Box
- Panasonic TX-49FX750B
- Bosch WKD28351GB
- Bosch GUD15A50GB Integrated
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
sentences:
- Apple iPhone SE 32GB
- Apple iPhone X 64GB
- LG 55SK9500PLA
- Sony Cyber-shot DSC-WX500
- Samsung Galaxy A5 SM-A520F
- Apple iPhone 8 Plus 64GB
- Indesit IWDD7123
- Bosch SMS67MW01G White
- Bosch KGV33XW30G White
- Samsung WW80K5413UW
- AMD Ryzen 3 1300X 3.5GHz Box
- Bosch WAW28750GB
- Samsung Galaxy S8+ 64GB
- Bosch KGN39VW35G White
- Intel Core i7-7700K 4.2GHz Box
- Hotpoint RZAAV22P White
- Samsung UE49NU8000
- HP AMD Opteron 6276 2.3GHz Upgrade Tray
- Praktica Luxmedia Z250
- Hotpoint HFC2B19SV White
- Hisense RB385N4EW1 White
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
sentences:
- Bosch KGN36HI32 Stainless Steel
- Bosch SMS24AW01G White
- Hotpoint WDAL8640P
- Doro 6050
- Samsung QE55Q7FN
- AMD Ryzen 3 1200 3.1GHz Box
- Samsung UE55NU7500
- Huawei Honor 10 128GB Dual SIM
- Sony Xperia L1
- Hotpoint FFU4DK Black
- Hoover DXOC 68C3B
- Sony Xperia XA1
- Nikon D7200 + 18-105mm VR
- HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
- Samsung UE49NU8000
- Panasonic Lumix DMC-FT30
- Hotpoint FDL 9640K UK
- Apple iPhone 6S Plus 128GB
- Nikon D5600 + AF-P 18-55mm VR
- HP AMD Opteron 6238 2.6GHz Upgrade Tray
- Apple iPhone SE 32GB
- source_sentence: lg 49uk6300plb/49uk6300plb
sentences:
- Bosch KIR24V20GB Integrated
- Bosch WAWH8660GB
- Intel Core i5-7600K 3.80GHz Box
- Sony Bravia KD-65AF8
- Samsung RL4362FBASL Stainless Steel
- Bosch SMI50C15GB Silver
- Apple iPhone XS Max 256GB
- Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
- Bosch KGN36VW35G White
- Samsung WW70K5410UW
- Samsung Galaxy J6
- LG 49UK6300PLB
- Doro Secure 580
- Sony Xperia XZ1 Compact
- Bosch SMV50C10GB Integrated
- Bosch KGN34VB35G Black
- Panasonic NN-E27JWMBPQ White
- Samsung WW10M86DQOA/EU
- LG 55SK9500PLA
- Samsung QE65Q8DN
- Canon EOS 80D
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Product Category Retrieval Test
type: Product-Category-Retrieval-Test
metrics:
- type: cosine_accuracy@1
value: 0.8085774058577406
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9476987447698745
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9644351464435147
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9769874476987448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8085774058577406
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3158995815899582
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19288702928870294
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09769874476987449
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8085774058577406
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9476987447698745
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9644351464435147
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9769874476987448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9041917131034228
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.879607906621505
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8805000617705705
name: Cosine Map@100
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llmvetter/embedding_finetune")
# Run inference
sentences = [
'lg 49uk6300plb/49uk6300plb',
'LG 49UK6300PLB',
'Samsung Galaxy J6',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
Product-Category-Retrieval-Test
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8086 |
cosine_accuracy@3 | 0.9477 |
cosine_accuracy@5 | 0.9644 |
cosine_accuracy@10 | 0.977 |
cosine_precision@1 | 0.8086 |
cosine_precision@3 | 0.3159 |
cosine_precision@5 | 0.1929 |
cosine_precision@10 | 0.0977 |
cosine_recall@1 | 0.8086 |
cosine_recall@3 | 0.9477 |
cosine_recall@5 | 0.9644 |
cosine_recall@10 | 0.977 |
cosine_ndcg@10 | 0.9042 |
cosine_mrr@10 | 0.8796 |
cosine_map@100 | 0.8805 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,820 training samples
- Columns:
sentence_0
,sentence_1
,sentence_2
,sentence_3
,sentence_4
,sentence_5
,sentence_6
,sentence_7
,sentence_8
,sentence_9
,sentence_10
,sentence_11
,sentence_12
,sentence_13
,sentence_14
,sentence_15
,sentence_16
,sentence_17
,sentence_18
,sentence_19
,sentence_20
, andsentence_21
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 sentence_3 sentence_4 sentence_5 sentence_6 sentence_7 sentence_8 sentence_9 sentence_10 sentence_11 sentence_12 sentence_13 sentence_14 sentence_15 sentence_16 sentence_17 sentence_18 sentence_19 sentence_20 sentence_21 type string string string string string string string string string string string string string string string string string string string string string string details - min: 4 tokens
- mean: 18.41 tokens
- max: 47 tokens
- min: 6 tokens
- mean: 10.94 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.11 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.15 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.89 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.89 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.98 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.07 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.04 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.84 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.82 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.81 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.05 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.92 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.18 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.07 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.93 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.02 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.04 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.02 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.95 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 10.86 tokens
- max: 30 tokens
- Samples:
sentence_0 sentence_1 sentence_2 sentence_3 sentence_4 sentence_5 sentence_6 sentence_7 sentence_8 sentence_9 sentence_10 sentence_11 sentence_12 sentence_13 sentence_14 sentence_15 sentence_16 sentence_17 sentence_18 sentence_19 sentence_20 sentence_21 sony kd49xf8505bu 49 4k ultra hd tv
Sony Bravia KD-49XF8505
Intel Core i7-8700K 3.7GHz Box
Bosch WAN24100GB
AMD FX-6300 3.5GHz Box
Bosch WIW28500GB
Bosch KGN36VL35G Stainless Steel
Indesit XWDE751480XS
CAT S41 Dual SIM
Sony Xperia XA1 Ultra 32GB
Samsung Galaxy J6
Samsung QE55Q7FN
Bosch KGN39VW35G White
Intel Core i5 7400 3.0GHz Box
Neff C17UR02N0B Stainless Steel
Samsung RR39M7340SA Silver
Samsung RB41J7255SR Stainless Steel
Hoover DXOC 68C3B
Canon PowerShot SX730 HS
Samsung RR39M7340BC Black
Praktica Luxmedia WP240
HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray
doro 8040 4g sim free mobile phone black
Doro 8040
Bosch HMT75M551 Stainless Steel
Bosch SMI50C15GB Silver
Samsung WW90K5413UX
Panasonic Lumix DMC-TZ70
Sony KD-49XF7073
Nikon CoolPix W100
Samsung WD90J6A10AW
Bosch CFA634GS1B Stainless Steel
HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray
Canon EOS 800D + 18-55mm IS STM
Samsung UE50NU7400
Apple iPhone 6S 128GB
Samsung RS52N3313SA/EU Graphite
Bosch WAW325H0GB
Sony Bravia KD-55AF8
Sony Alpha 6500
Doro 5030
LG GSL761WBXV Black
Bosch SMS67MW00G White
AEG L6FBG942R
fridgemaster muz4965 undercounter freezer white a rated
Fridgemaster MUZ4965 White
Samsung UE49NU7100
Nikon CoolPix A10
Samsung UE55NU7100
Samsung QE55Q7FN
Bosch KGN49XL30G Stainless Steel
Samsung UE49NU7500
LG 55UK6300PLB
Hoover DXOC 68C3B
Panasonic Lumix DMC-FZ2000
Panasonic Lumix DMC-TZ80
Bosch WKD28541GB
Apple iPhone 6 32GB
Sony Bravia KDL-32WE613
Lec TF50152W White
Bosch KGV36VW32G White
Bosch WAYH8790GB
Samsung RS68N8240B1/EU Black
Sony Xperia XZ1
HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray
Sharp R372WM White
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 8multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | Product-Category-Retrieval-Test_cosine_ndcg@10 |
---|---|---|---|
1.0 | 120 | - | 0.7406 |
2.0 | 240 | - | 0.8437 |
3.0 | 360 | - | 0.8756 |
4.0 | 480 | - | 0.8875 |
4.1667 | 500 | 2.5302 | - |
5.0 | 600 | - | 0.8963 |
6.0 | 720 | - | 0.9015 |
7.0 | 840 | - | 0.9042 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}