Upload lora_intent_classifier_bert-base-uncased_model LoRA model
Browse files- README.md +96 -0
- config.json +35 -0
- label_mapping.json +12 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: bert-base-uncased
|
| 4 |
+
tags:
|
| 5 |
+
- lora
|
| 6 |
+
- semantic-router
|
| 7 |
+
- intent-classification
|
| 8 |
+
- text-classification
|
| 9 |
+
- candle
|
| 10 |
+
- rust
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
pipeline_tag: text-classification
|
| 14 |
+
library_name: candle
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# lora_intent_classifier_bert-base-uncased_model
|
| 18 |
+
|
| 19 |
+
## Model Description
|
| 20 |
+
|
| 21 |
+
This is a LoRA (Low-Rank Adaptation) fine-tuned model based on **bert-base-uncased** for Intent Classification - Classifies text into categories like business, technology, science, etc..
|
| 22 |
+
|
| 23 |
+
This model is part of the [semantic-router](https://github.com/vllm-project/semantic-router) project and is optimized for use with the Candle framework in Rust.
|
| 24 |
+
|
| 25 |
+
## Model Details
|
| 26 |
+
|
| 27 |
+
- **Base Model**: bert-base-uncased
|
| 28 |
+
- **Task**: Intent Classification
|
| 29 |
+
- **Framework**: Candle (Rust)
|
| 30 |
+
- **Model Size**: ~418MB
|
| 31 |
+
- **LoRA Rank**: N/A
|
| 32 |
+
- **LoRA Alpha**: N/A
|
| 33 |
+
- **Target Modules**:
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
### With semantic-router (Recommended)
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from semantic_router import SemanticRouter
|
| 41 |
+
|
| 42 |
+
# The model will be automatically downloaded and used
|
| 43 |
+
router = SemanticRouter()
|
| 44 |
+
results = router.classify_batch(["Your text here"])
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### With Candle (Rust)
|
| 48 |
+
|
| 49 |
+
```rust
|
| 50 |
+
use candle_core::{Device, Tensor};
|
| 51 |
+
use candle_transformers::models::bert::BertModel;
|
| 52 |
+
|
| 53 |
+
// Load the model using Candle
|
| 54 |
+
let device = Device::Cpu;
|
| 55 |
+
let model = BertModel::load(&device, &config, &weights)?;
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Training Details
|
| 59 |
+
|
| 60 |
+
This model was fine-tuned using LoRA (Low-Rank Adaptation) technique:
|
| 61 |
+
|
| 62 |
+
- **Rank**: 16
|
| 63 |
+
- **Alpha**: 32
|
| 64 |
+
- **Dropout**: 0.1
|
| 65 |
+
- **Target Modules**:
|
| 66 |
+
|
| 67 |
+
## Performance
|
| 68 |
+
|
| 69 |
+
Intent Classification - Classifies text into categories like business, technology, science, etc.
|
| 70 |
+
|
| 71 |
+
For detailed performance metrics, see the [training results](https://github.com/vllm-project/semantic-router/blob/main/training-result.md).
|
| 72 |
+
|
| 73 |
+
## Files
|
| 74 |
+
|
| 75 |
+
- `model.safetensors`: LoRA adapter weights
|
| 76 |
+
- `config.json`: Model configuration
|
| 77 |
+
- `lora_config.json`: LoRA-specific configuration
|
| 78 |
+
- `tokenizer.json`: Tokenizer configuration
|
| 79 |
+
- `label_mapping.json`: Label mappings for classification
|
| 80 |
+
|
| 81 |
+
## Citation
|
| 82 |
+
|
| 83 |
+
If you use this model, please cite:
|
| 84 |
+
|
| 85 |
+
```bibtex
|
| 86 |
+
@misc{semantic-router-lora,
|
| 87 |
+
title={LoRA Fine-tuned Models for Semantic Router},
|
| 88 |
+
author={Semantic Router Team},
|
| 89 |
+
year={2025},
|
| 90 |
+
url={https://github.com/vllm-project/semantic-router}
|
| 91 |
+
}
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## License
|
| 95 |
+
|
| 96 |
+
Apache 2.0
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "business",
|
| 14 |
+
"1": "law",
|
| 15 |
+
"2": "psychology"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"business": 0,
|
| 21 |
+
"law": 1,
|
| 22 |
+
"psychology": 2
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "absolute",
|
| 31 |
+
"transformers_version": "4.56.1",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 30522
|
| 35 |
+
}
|
label_mapping.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"category_to_idx": {
|
| 3 |
+
"business": 0,
|
| 4 |
+
"law": 1,
|
| 5 |
+
"psychology": 2
|
| 6 |
+
},
|
| 7 |
+
"idx_to_category": {
|
| 8 |
+
"0": "business",
|
| 9 |
+
"1": "law",
|
| 10 |
+
"2": "psychology"
|
| 11 |
+
}
|
| 12 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8890bf7cb4ddac2b91fa6fe86e46656ee3c6042c548dbba13306498a140d1df8
|
| 3 |
+
size 437961724
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|