Taka008 commited on
Commit
9b9bb24
·
verified ·
1 Parent(s): 720a59d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ pipeline_tag: text-generation
21
+ library_name: transformers
22
+ inference: false
23
+ ---
24
+ # llm-jp-3-1.8b-instruct3
25
+
26
+ LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
27
+
28
+ This repository provides **llm-jp-3-1.8b-instruct3** model.
29
+ For an overview of the LLM-jp-3 models across different parameter sizes, please refer to:
30
+ - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa)
31
+ - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731).
32
+
33
+
34
+ Checkpoints format: Hugging Face Transformers
35
+
36
+
37
+ ## Required Libraries and Their Versions
38
+
39
+ - torch>=2.3.0
40
+ - transformers>=4.40.1
41
+ - tokenizers>=0.19.1
42
+ - accelerate>=0.29.3
43
+ - flash-attn>=2.5.8
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM
50
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-1.8b-instruct3")
51
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-1.8b-instruct3", device_map="auto", torch_dtype=torch.bfloat16)
52
+ chat = [
53
+ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
54
+ {"role": "user", "content": "自然言語処理とは何か"},
55
+ ]
56
+ tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
57
+ with torch.no_grad():
58
+ output = model.generate(
59
+ tokenized_input,
60
+ max_new_tokens=100,
61
+ do_sample=True,
62
+ top_p=0.95,
63
+ temperature=0.7,
64
+ repetition_penalty=1.05,
65
+ )[0]
66
+ print(tokenizer.decode(output))
67
+ ```
68
+
69
+
70
+ ## Model Details
71
+
72
+ - **Model type:** Transformer-based Language Model
73
+ - **Total seen tokens:** 2.1T tokens
74
+
75
+ |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters|
76
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|
77
+ |150M|12|512|8|4096|101,874,688|50,344,448|
78
+ |440M|16|1024|8|4096|203,749,376|243,303,424|
79
+ |980M|20|1536|8|4096|305,624,064|684,258,816|
80
+ |1.8b|24|2048|16|4096|407,498,752|1,459,718,144|
81
+ |3.7b|28|3072|24|4096|611,248,128|3,171,068,928|
82
+ |7.2b|32|4096|32|4096|814,997,504|6,476,271,616|
83
+ |13b|40|5120|40|4096|1,018,746,880|12,688,184,320|
84
+ |172b|96|12288|96|4096|2,444,992,512|169,947,181,056|
85
+
86
+ ## Tokenizer
87
+
88
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
89
+ The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
90
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
91
+
92
+ ## Datasets
93
+
94
+ ### Pre-training
95
+
96
+ The models have been pre-trained using a blend of the following datasets.
97
+
98
+ | Language | Dataset | Tokens|
99
+ |:---|:---|---:|
100
+ |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
101
+ ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
102
+ ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
103
+ ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
104
+ ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
105
+ |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
106
+ ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
107
+ ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
108
+ ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
109
+ ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
110
+ ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
111
+ ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
112
+ |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
113
+ |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
114
+ |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
115
+
116
+ ### Post-training
117
+
118
+ We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.
119
+
120
+ #### Supervised Fine-tuning
121
+ The datasets used for supervised fine-tuning are as follows:
122
+
123
+ | Language | Dataset | Description |
124
+ |:---|:---|:---|
125
+ |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. |
126
+ | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. |
127
+ | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. |
128
+ | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
129
+ | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
130
+ | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. |
131
+ | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. |
132
+ |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - |
133
+ | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - |
134
+ |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. |
135
+
136
+
137
+ #### Direct Preference Optimization
138
+
139
+ The datasets used for supervised fine-tuning are as follows:
140
+
141
+ | Language | Dataset | Description |
142
+ |:---|:---|:---|
143
+ |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. |
144
+ | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. |
145
+
146
+
147
+ ## Evaluation
148
+
149
+ Detailed evaluation results are reported in this blog.
150
+
151
+
152
+ ## Risks and Limitations
153
+
154
+ The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
155
+
156
+
157
+ ## Send Questions to
158
+
159
+ llm-jp(at)nii.ac.jp
160
+
161
+
162
+ ## License
163
+
164
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
165
+
166
+ ## Model Card Authors
167
+
168
+ *The names are listed in alphabetical order.*
169
+
170
+ Hirokazu Kiyomaru and Takashi Kodama.