noobai11-animagine4 / joint_loss.py
ljleb's picture
Upload 3 files
01f5cc2 verified
import csv
import dataclasses
import subprocess
from copy import deepcopy
import itertools
from concurrent.futures import ThreadPoolExecutor
import pathlib
from typing import List
import diffusers
import transformers
import safetensors.torch
import torch.utils.data
from tqdm import tqdm
from datetime import datetime
import random
import os
import time
from torch.utils.tensorboard import SummaryWriter
torch.manual_seed(0)
random.seed(0)
LATENTS_OUTPUT_DIR = pathlib.Path("latents")
CAPTIONS_OUTPUT_DIR = pathlib.Path("captions2")
DANBOORU_ARTISTS_PATH = pathlib.Path("danbooru_artist.csv")
E621_ARTISTS_PATH = pathlib.Path("e621_artist.csv")
LOCK_FILE = "safetensors.lock"
device = torch.device("cuda")
dtype = torch.float16
train_logger = SummaryWriter(f"logs/pony_scoreless_{datetime.now().strftime('%Y%m%d_%H%M%S')}")
def accumulate_grads():
batch_size = 1
epochs = 1
tokenizer = create_tokenizer(device)
model_a = diffusers.StableDiffusionXLPipeline.from_single_file(
"NoobAI-XL-v1.1.safetensors",
torch_dtype=dtype,
)
delattr(model_a, "vae")
model_a.unet.to(device=device)
# model_a.unet.enable_xformers_memory_efficient_attention()
model_a.unet.enable_gradient_checkpointing()
model_a.text_encoder.to(device=device)
model_a.text_encoder.gradient_checkpointing_enable()
model_a.text_encoder_2.to(device=device)
model_a.text_encoder_2.gradient_checkpointing_enable()
model_a.text_encoder_combined = CombinedCLIPTextEncoder(model_a.text_encoder, model_a.text_encoder_2, batch_size)
model_b = diffusers.StableDiffusionXLPipeline.from_single_file(
"animagine-xl-4.0.safetensors",
torch_dtype=dtype,
)
delattr(model_b, "vae")
model_b.unet.to(device=device)
# model_b.unet.enable_xformers_memory_efficient_attention()
model_b.unet.enable_gradient_checkpointing()
model_b.text_encoder.to(device=device)
model_b.text_encoder.gradient_checkpointing_enable()
model_b.text_encoder_2.to(device=device)
model_b.text_encoder_2.gradient_checkpointing_enable()
model_b.text_encoder_combined = CombinedCLIPTextEncoder(model_b.text_encoder, model_b.text_encoder_2, batch_size)
model_a.unet.eval()
model_a.text_encoder.eval()
model_a.text_encoder_2.eval()
model_b.unet.eval()
model_b.text_encoder.eval()
model_b.text_encoder_2.eval()
# shared_stats = {}
# stats_lock = threading.Lock()
# # Two barriers for synchronization between two threads.
# grad_barrier1 = threading.Barrier(2)
# grad_barrier2 = threading.Barrier(2)
# def scaling_hook_factory(key, branch_id, target_scale=1.0):
# nonlocal shared_stats, stats_lock, grad_barrier1, grad_barrier2
# def scaling_hook(_module, _grad_input, grad_output):
# """
# A full-backward hook that:
# 1. Computes, for each non-None tensor in grad_output, its maximum absolute value.
# We store these in a dictionary (keyed by output index).
# 2. Waits once until both threads have stored their local max values.
# 3. Computes, for each output index, the global maximum from both models.
# 4. Waits a second time to ensure synchronization before clearing the shared stats.
# 5. Scales each non-None output tensor independently using its computed scaling factor.
# Outputs that are None are passed through unchanged.
# """
# # Step 1: Compute and store local maximums per output index.
# print(f"backprop for {key}")
# local_maxes = {}
# for i, g in enumerate(grad_output):
# if g is not None:
# local_maxes[i] = g.detach().abs().max().cpu().item()
# with stats_lock:
# shared_stats[f"{key}_{branch_id}"] = local_maxes
# # Step 2: Wait until both threads have stored their values.
# grad_barrier1.wait()
# # Step 3: Compute the global maximum for each output index.
# with stats_lock:
# stats_a = shared_stats.get(f"{key}_a", {})
# stats_b = shared_stats.get(f"{key}_b", {})
# # Build a dictionary for global max per output index.
# global_maxes = {}
# for i in local_maxes.keys():
# assert i in stats_a and i in stats_b, key
# global_maxes[i] = max(stats_a[i], stats_b[i])
# # Step 4: Wait again to ensure both threads have computed the global values.
# barrier_val = grad_barrier2.wait()
# # Let only one thread clear the shared stats.
# if barrier_val == 0:
# with stats_lock:
# shared_stats.pop(f"{key}_a")
# shared_stats.pop(f"{key}_b")
# # Step 5: For each output tensor, compute a scaling factor and apply it.
# scaled_outputs = []
# for i, g in enumerate(grad_output):
# if g is not None:
# global_max = global_maxes[i]
# # Compute scaling factor only if global_max is positive and below target_scale.
# if 0 < global_max < target_scale:
# g = g * (target_scale / global_max)
# scaled_outputs.append(g)
# else:
# scaled_outputs.append(None)
# return tuple(scaled_outputs)
# return scaling_hook
# for model, branch_id in zip((model_a, model_b), ("a", "b")):
# for k, v in get_modules(model):
# if k.endswith("transformer_blocks") or k.endswith("encoder.layers"):
# for i, module in enumerate(v):
# module.register_full_backward_hook(scaling_hook_factory(f"{k}.{i}", branch_id))
scheduler = create_scheduler(device)
data_loader = get_data_loader(tokenizer, batch_size)
total_steps = 0
log_scalars_a = {}
log_scalars_b = {}
log_scalars_sync = {}
n1 = torch.tensor(-1, device=device, dtype=torch.long)
ldexp_offset = torch.tensor(20, device=device, dtype=torch.long)
def create_hook(param, k, log_scalars):
param.grad = torch.zeros_like(param)
log_scalars[k] = ldexp_offset.clone()
def hook(grad):
nonlocal param, log_scalars, k
while True:
new_grad = param.grad + grad.abs().ldexp(log_scalars[k])
if not new_grad.isfinite().all(): # overflow
log_scalars[k] -= 1
param.grad.ldexp_(n1)
else:
break
param.grad.copy_(new_grad)
return param.grad
return hook
for model, log_scalars in ((model_a, log_scalars_a), (model_b, log_scalars_b)):
for k, v in get_params(model):
v.register_hook(create_hook(v, k, log_scalars))
# for model, path in ((model_a, "grads_a.safetensors"), (model_b, "grads_b.safetensors")):
# with safetensors.safe_open(path, "pt") as f:
# for k, v in get_params(model):
# if k in f.keys():
# v.grad = f.get_tensor(k).to(v)
noisy_latents = timesteps = time_ids = None
def get_pred(args):
nonlocal noisy_latents, timesteps, time_ids
model, tokens = args
txt = model.text_encoder_combined(tokens[0])
return model.unet(
noisy_latents,
timesteps,
encoder_hidden_states=txt["conds"],
added_cond_kwargs={
"text_embeds": txt["pooled"],
"time_ids": time_ids,
},
).sample
params = list(v for k, v in itertools.chain(get_params(model_a), get_params(model_b)))
with ThreadPoolExecutor(max_workers=2) as worker:
for epoch_i in range(epochs):
for step_i, (latent_infos, tokens_a, tokens_b, post_ids) in enumerate(tqdm(data_loader)):
latents = torch.cat([latent_info["latent"] for latent_info in latent_infos], dim=0).to(device=device, dtype=dtype)
crop_hw = torch.stack([latent_info["crop_hw"] for latent_info in latent_infos]).to(device=device)
orig_hw = torch.stack([latent_info["orig_hw"] for latent_info in latent_infos]).to(device=device)
noise, noisy_latents, timesteps = get_noise_noisy_latents_and_timesteps(scheduler, latents)
time_ids = get_add_time_ids(orig_hw, crop_hw)
# if step_i < 1000:
# total_steps += batch_size
# continue
pred_a, pred_b = worker.map(get_pred, ((model_a, tokens_a), (model_b, tokens_b)))
mse = torch.nn.functional.mse_loss(pred_a, pred_b, reduction="none").flatten(start_dim=1).mean(dim=-1)
loss = (mse / mse.detach()).mean()
train_logger.add_scalar("grads/loss", loss.item(), total_steps)
train_logger.add_scalar("grads/loss_raw", mse.mean().item(), total_steps)
train_logger.add_scalar("grads/timestep", timesteps[0].item(), total_steps)
torch.autograd.grad(loss, params, retain_graph=False, allow_unused=True) # calls backward hooks
for (k, v_a), (k_b, v_b) in zip(get_params(model_a), get_params(model_b)):
assert k == k_b
if v_a.grad is not None and v_b.grad is not None:
while log_scalars_a[k] > log_scalars_b[k]:
log_scalars_a[k] -= 1
v_a.grad.ldexp_(n1)
while log_scalars_b[k] > log_scalars_a[k]:
log_scalars_b[k] -= 1
v_b.grad.ldexp_(n1)
log_scalars_sync[k] = log_scalars_a[k]
if (step_i + 1) % 10 == 0:
train_logger.add_scalar("grads/max_a", max(v.grad.max().item() for k, v in get_params(model_a) if v.grad is not None), total_steps)
train_logger.add_scalar("grads/max_b", max(v.grad.max().item() for k, v in get_params(model_b) if v.grad is not None), total_steps)
if (step_i + 1) % 1000 == 0:
save_grads(model_a, "grads_a.safetensors", first=True)
safetensors.torch.save_file(log_scalars_sync, "log_scalars.safetensors")
save_grads(model_b, "grads_b.safetensors", last=True)
total_steps += batch_size
def get_modules(model):
return itertools.chain(
prefix_iter(model.unet.named_modules(), "unet."),
prefix_iter(model.text_encoder.named_modules(), "text_encoder."),
prefix_iter(model.text_encoder_2.named_modules(), "text_encoder_2."),
)
def get_params(model):
return itertools.chain(
prefix_iter(model.unet.named_parameters(), "unet."),
prefix_iter(model.text_encoder.named_parameters(), "text_encoder."),
prefix_iter(model.text_encoder_2.named_parameters(), "text_encoder_2."),
)
def prefix_iter(item_iter, prefix):
return ((prefix + k, v) for k, v in item_iter)
def save_grads(model, path, first=False, last=False):
if first:
wait_for_lock_removal()
safetensors.torch.save_file(
{k: v.grad.cpu().contiguous() for k, v in get_params(model) if v.grad is not None},
path,
)
if last:
# Create a lock file to signal that new checkpoints have been saved
with open(LOCK_FILE, "w") as f:
f.write("pending download")
print("Checkpoint pair saved, lock file created.")
def wait_for_lock_removal(poll_interval=5):
"""Wait until the lock file is removed by the local download script."""
while os.path.exists(LOCK_FILE):
time.sleep(poll_interval)
def create_scheduler(device: torch.device):
scheduler = diffusers.DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
)
inv_snr = ((1-scheduler.alphas_cumprod) / scheduler.alphas_cumprod).to(device)
scheduler.inv_snr = inv_snr
scheduler.inv_snr_weights = inv_snr / inv_snr.sum()
return scheduler
def debiased_loss_scaling(timesteps, noise_scheduler):
return noise_scheduler.inv_snr[timesteps]
def get_noise_noisy_latents_and_timesteps(scheduler, latents):
batch_size = latents.shape[0]
noise = torch.randn_like(latents, device=latents.device)
timesteps = torch.multinomial(scheduler.inv_snr_weights, batch_size)
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
return noise, noisy_latents, timesteps
def get_add_time_ids(original_size, crops_coords_top_left):
add_time_ids = torch.cat([
original_size,
crops_coords_top_left,
torch.tensor([[1024]*2], device=original_size.device).expand(len(original_size), -1),
], dim=1)
return add_time_ids
def get_data_loader(tokenizer, batch_size: int):
return torch.utils.data.DataLoader(
PromptDataset(tokenizer),
batch_size=batch_size,
shuffle=True,
collate_fn=lambda x: zip(*x),
)
@dataclasses.dataclass
class ArtistScore:
artist_tag: str
count: int
class PromptDataset(torch.utils.data.Dataset):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.latent_paths = list(LATENTS_OUTPUT_DIR.iterdir())
with open(DANBOORU_ARTISTS_PATH, "r", encoding='utf-8') as f:
reader = csv.DictReader(f)
self.b_artists = [ArtistScore(r["trigger"], int(r["count"])) for r in reader if r["artist"] != "banned_artist"]
self.b_artists.sort(key=lambda t: t.count, reverse=True)
self.b_artist_scores = torch.tensor(list(map(lambda t: t.count, self.b_artists)), device=device, dtype=torch.float32)
self.b_artist_scores /= self.b_artist_scores.sum()
with open(E621_ARTISTS_PATH, "r", encoding='utf-8') as f:
reader = csv.DictReader(f,)
self.a_artists = self.b_artists + [ArtistScore(r["trigger"], int(r["count"])) for r in reader if r["artist"] not in ["conditional_dnp", "avoid_posting", "unknown_artist", "third-party_edit", "sound_warning", "anonymous_artist"]]
self.a_artists.sort(key=lambda t: t.count, reverse=True)
self.a_artist_scores = torch.tensor(list(map(lambda t: t.count, self.a_artists)), device=device, dtype=torch.float32)
self.a_artist_scores /= self.a_artist_scores.sum()
self.a_prefix = "masterpiece, best quality, newest, absurdres, highres, safe, "
self.b_suffix = ", masterpiece, high score, great score, absurdres"
def __len__(self):
return len(self.latent_paths)
def __getitem__(self, item):
post_id = self.latent_paths[item].stem
latent = safetensors.torch.load_file(LATENTS_OUTPUT_DIR / f"{post_id}.safetensors", device=str(device))
caption = (CAPTIONS_OUTPUT_DIR / f"{post_id}.txt").read_text()
caption_a = self.a_prefix + caption
caption_b = caption + self.b_suffix
if item % 2 == 0:
artist_a = self.a_artists[torch.multinomial(self.a_artist_scores, 1).item()]
caption_a = artist_a.artist_tag + ", " + caption_a
else:
artist_b = self.b_artists[torch.multinomial(self.b_artist_scores, 1).item()]
caption_b = artist_b.artist_tag + ", " + caption_b
tokens_a = self.tokenizer.chunk_tokens(self.tokenizer([caption_a.replace("),", ") ,")]))
tokens_b = self.tokenizer.chunk_tokens(self.tokenizer([caption_b.replace("),", ") ,")]))
return latent, tokens_a, tokens_b, post_id
class CombinedCLIPTextEncoder(torch.nn.Module):
def __init__(self, clip_l, clip_g, batch_size):
super().__init__()
assert batch_size == 1
self.clip_l = clip_l
self.clip_g = clip_g
def forward(self, tokens):
tokens_clip_l = tokens["clip_l"].copy()
del tokens_clip_l["prompt_starts"]
tokens_clip_g = tokens["clip_g"].copy()
clip_g_starts = tokens_clip_g.pop("prompt_starts")
clip_l_encoded = self.clip_l(**tokens_clip_l, output_hidden_states=True, return_dict=True)
clip_g_encoded = self.clip_g(**tokens_clip_g, output_hidden_states=True, return_dict=True)
combined_encoded = torch.cat([clip_l_encoded["hidden_states"][-2], clip_g_encoded["hidden_states"][-2]], dim=-1)
combined_encoded_reshape = combined_encoded.reshape(1, -1, 2048)
return {
"conds": combined_encoded_reshape,
"pooled": clip_g_encoded.text_embeds[clip_g_starts],
}
def create_tokenizer(device: torch.device):
tokenizer_l = transformers.CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
tokenizer_g = transformers.CLIPTokenizer.from_pretrained("laion/CLIP-ViT-g-14-laion2B-s34B-b88K")
return CombinedCLIPTokenizer(tokenizer_l, tokenizer_g, device)
class CombinedCLIPTokenizer(torch.nn.Module):
comma_token = 267
def __init__(self, tokenizer_l, tokenizer_g, output_device: torch.device):
super().__init__()
self.tokenizer_l = tokenizer_l
self.tokenizer_g = tokenizer_g
self.output_device = output_device
def forward(self, prompts: List[str]) -> dict:
tokens_l = self.tokenizer_l(prompts, add_special_tokens=False)
return {
"clip_l": tokens_l,
"clip_g": deepcopy(tokens_l),
}
def chunk_tokens(self, tokens: dict):
return {
"clip_l": self._chunk_tokens_impl(self.tokenizer_l, tokens["clip_l"]),
"clip_g": self._chunk_tokens_impl(self.tokenizer_g, tokens["clip_g"]),
}
def _chunk_tokens_impl(self, tokenizer, tokens: dict):
input_ids = []
attention_masks = []
chunk_counts = []
for prompt, mask in zip(tokens["input_ids"], tokens["attention_mask"]):
last_comma = 0
current_chunk = []
chunks = []
chunks_attn = []
def next_chunk():
nonlocal current_chunk
current_chunk = [tokenizer.bos_token_id] + current_chunk + [tokenizer.eos_token_id]
num_tokens = len(current_chunk)
current_chunk.extend([tokenizer.pad_token_id] * (77 - num_tokens))
chunks.append(current_chunk)
current_chunk = []
chunks_attn.append([1] * num_tokens + [0] * (77 - num_tokens))
for token_i, token in enumerate(prompt):
is_last_token = token_i == len(prompt) - 1
seq_suffix = prompt[last_comma:token_i + int(is_last_token)]
if token == self.comma_token or is_last_token:
if len(current_chunk) + len(seq_suffix) > 77 - 2: # leave space for bos and eos
next_chunk()
seq_suffix = prompt[last_comma+1:token_i + int(is_last_token)] # remove leading comma
# can always append, sequences without commas will never be longer than 77 tokens
current_chunk.extend(seq_suffix)
last_comma = token_i
if current_chunk or not chunks:
next_chunk()
chunk_counts.append(len(chunks))
input_ids.extend(chunks)
attention_masks.extend(chunks_attn)
return {
"input_ids": torch.tensor(input_ids, device=self.output_device),
"attention_mask": torch.tensor(attention_masks, device=self.output_device),
"prompt_starts": torch.tensor([0] + chunk_counts[:-1], device=self.output_device).cumsum(dim=0),
}
def shutdown_machine():
"""Shutdown the machine. Adjust the command as necessary for your environment."""
wait_for_lock_removal()
print("All checkpoints have been downloaded. Shutting down the machine.")
try:
subprocess.run("runpodctl stop pod $RUNPOD_POD_ID", shell=True, check=True)
except Exception as e:
print(f"Error shutting down: {e}")
if __name__ == "__main__":
accumulate_grads()
shutdown_machine()