|
import math,pdb,os |
|
from time import time as ttime |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from infer_pack import modules |
|
from infer_pack import attentions |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from infer_pack.commons import init_weights |
|
import numpy as np |
|
from infer_pack import commons |
|
class TextEncoder256(nn.Module): |
|
def __init__( |
|
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.emb_phone = nn.Linear(256, hidden_channels) |
|
self.lrelu=nn.LeakyReLU(0.1,inplace=True) |
|
if(f0==True): |
|
self.emb_pitch = nn.Embedding(256, hidden_channels) |
|
self.encoder = attentions.Encoder( |
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, phone, pitch, lengths): |
|
if(pitch==None): |
|
x = self.emb_phone(phone) |
|
else: |
|
x = self.emb_phone(phone) + self.emb_pitch(pitch) |
|
x = x * math.sqrt(self.hidden_channels) |
|
x=self.lrelu(x) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( |
|
x.dtype |
|
) |
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return m, logs, x_mask |
|
class TextEncoder256km(nn.Module): |
|
def __init__( |
|
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
|
|
self.emb_phone = nn.Embedding(500, hidden_channels) |
|
self.lrelu=nn.LeakyReLU(0.1,inplace=True) |
|
if(f0==True): |
|
self.emb_pitch = nn.Embedding(256, hidden_channels) |
|
self.encoder = attentions.Encoder( |
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, phone, pitch, lengths): |
|
if(pitch==None): |
|
x = self.emb_phone(phone) |
|
else: |
|
x = self.emb_phone(phone) + self.emb_pitch(pitch) |
|
x = x * math.sqrt(self.hidden_channels) |
|
x=self.lrelu(x) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( |
|
x.dtype |
|
) |
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return m, logs, x_mask |
|
class ResidualCouplingBlock(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
n_flows=4, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.flows = nn.ModuleList() |
|
for i in range(n_flows): |
|
self.flows.append( |
|
modules.ResidualCouplingLayer( |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
mean_only=True, |
|
) |
|
) |
|
self.flows.append(modules.Flip()) |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
else: |
|
for flow in reversed(self.flows): |
|
x = flow(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for i in range(self.n_flows): |
|
self.flows[i * 2].remove_weight_norm() |
|
class PosteriorEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = modules.WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( |
|
x.dtype |
|
) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
def remove_weight_norm(self): |
|
self.enc.remove_weight_norm() |
|
class Generator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
initial_channel, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
): |
|
super(Generator, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.conv_pre = Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
def forward(self, x, g=None): |
|
x = self.conv_pre(x) |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, modules.LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
class SineGen(torch.nn.Module): |
|
""" Definition of sine generator |
|
SineGen(samp_rate, harmonic_num = 0, |
|
sine_amp = 0.1, noise_std = 0.003, |
|
voiced_threshold = 0, |
|
flag_for_pulse=False) |
|
samp_rate: sampling rate in Hz |
|
harmonic_num: number of harmonic overtones (default 0) |
|
sine_amp: amplitude of sine-wavefrom (default 0.1) |
|
noise_std: std of Gaussian noise (default 0.003) |
|
voiced_thoreshold: F0 threshold for U/V classification (default 0) |
|
flag_for_pulse: this SinGen is used inside PulseGen (default False) |
|
Note: when flag_for_pulse is True, the first time step of a voiced |
|
segment is always sin(np.pi) or cos(0) |
|
""" |
|
|
|
def __init__(self, samp_rate, harmonic_num=0, |
|
sine_amp=0.1, noise_std=0.003, |
|
voiced_threshold=0, |
|
flag_for_pulse=False): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.dim = self.harmonic_num + 1 |
|
self.sampling_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
|
|
def _f02uv(self, f0): |
|
|
|
uv = torch.ones_like(f0) |
|
uv = uv * (f0 > self.voiced_threshold) |
|
return uv |
|
|
|
def forward(self, f0,upp): |
|
""" sine_tensor, uv = forward(f0) |
|
input F0: tensor(batchsize=1, length, dim=1) |
|
f0 for unvoiced steps should be 0 |
|
output sine_tensor: tensor(batchsize=1, length, dim) |
|
output uv: tensor(batchsize=1, length, 1) |
|
""" |
|
with torch.no_grad(): |
|
f0 = f0[:, None].transpose(1, 2) |
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device) |
|
|
|
f0_buf[:, :, 0] = f0[:, :, 0] |
|
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) |
|
rad_values = (f0_buf / self.sampling_rate) % 1 |
|
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device) |
|
rand_ini[:, 0] = 0 |
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini |
|
tmp_over_one = torch.cumsum(rad_values, 1) |
|
tmp_over_one*=upp |
|
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1) |
|
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1) |
|
tmp_over_one%=1 |
|
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 |
|
cumsum_shift = torch.zeros_like(rad_values) |
|
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 |
|
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) |
|
sine_waves = sine_waves * self.sine_amp |
|
uv = self._f02uv(f0) |
|
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1) |
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0,is_half=True): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
self.is_half=is_half |
|
|
|
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, |
|
sine_amp, add_noise_std, voiced_threshod) |
|
|
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x,upp=None): |
|
sine_wavs, uv, _ = self.l_sin_gen(x,upp) |
|
if(self.is_half==True):sine_wavs=sine_wavs.half() |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
return sine_merge,None,None |
|
class GeneratorNSF(torch.nn.Module): |
|
def __init__( |
|
self, |
|
initial_channel, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
sr=40000, |
|
is_half=False |
|
): |
|
super(GeneratorNSF, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
|
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) |
|
self.m_source = SourceModuleHnNSF( |
|
sampling_rate=sr, |
|
harmonic_num=0, |
|
is_half=is_half |
|
) |
|
self.noise_convs = nn.ModuleList() |
|
self.conv_pre = Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
c_cur = upsample_initial_channel // (2 ** (i + 1)) |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
if i + 1 < len(upsample_rates): |
|
stride_f0 = np.prod(upsample_rates[i + 1:]) |
|
self.noise_convs.append(Conv1d( |
|
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) |
|
else: |
|
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
self.upp=np.prod(upsample_rates) |
|
|
|
def forward(self, x, f0,g=None): |
|
har_source, noi_source, uv = self.m_source(f0,self.upp) |
|
har_source = har_source.transpose(1, 2) |
|
x = self.conv_pre(x) |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, modules.LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
x_source = self.noise_convs[i](har_source) |
|
x = x + x_source |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
class SynthesizerTrnMs256NSF(nn.Module): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
spk_embed_dim, |
|
gin_channels=0, |
|
sr=40000, |
|
**kwargs |
|
): |
|
|
|
super().__init__() |
|
self.spec_channels = spec_channels |
|
self.inter_channels = inter_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.resblock = resblock |
|
self.resblock_kernel_sizes = resblock_kernel_sizes |
|
self.resblock_dilation_sizes = resblock_dilation_sizes |
|
self.upsample_rates = upsample_rates |
|
self.upsample_initial_channel = upsample_initial_channel |
|
self.upsample_kernel_sizes = upsample_kernel_sizes |
|
self.segment_size = segment_size |
|
self.gin_channels = gin_channels |
|
self.spk_embed_dim=spk_embed_dim |
|
self.enc_p = TextEncoder256( |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
self.dec = GeneratorNSF( |
|
inter_channels, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
sr=sr, |
|
is_half=kwargs["is_half"] |
|
) |
|
self.enc_q = PosteriorEncoder( |
|
spec_channels, |
|
inter_channels, |
|
hidden_channels, |
|
5, |
|
1, |
|
16, |
|
gin_channels=gin_channels, |
|
) |
|
self.flow = ResidualCouplingBlock( |
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels |
|
) |
|
self.emb_g = nn.Linear(self.spk_embed_dim, gin_channels) |
|
|
|
def remove_weight_norm(self): |
|
self.dec.remove_weight_norm() |
|
self.flow.remove_weight_norm() |
|
self.enc_q.remove_weight_norm() |
|
|
|
def infer(self, phone, phone_lengths, pitch,pitchf, ds,max_len=None): |
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) |
|
if("float16"in str(m_p.dtype)):ds=ds.half() |
|
ds=ds.to(m_p.device) |
|
g = self.emb_g(ds).unsqueeze(-1) |
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask |
|
|
|
z = self.flow(z_p, x_mask, g=g, reverse=True) |
|
o = self.dec((z * x_mask)[:, :, :max_len],pitchf, g=None) |
|
return o, x_mask, (z, z_p, m_p, logs_p) |
|
class SynthesizerTrn256NSFkm(nn.Module): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
spk_embed_dim, |
|
gin_channels=0, |
|
sr=40000, |
|
**kwargs |
|
): |
|
|
|
super().__init__() |
|
self.spec_channels = spec_channels |
|
self.inter_channels = inter_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.resblock = resblock |
|
self.resblock_kernel_sizes = resblock_kernel_sizes |
|
self.resblock_dilation_sizes = resblock_dilation_sizes |
|
self.upsample_rates = upsample_rates |
|
self.upsample_initial_channel = upsample_initial_channel |
|
self.upsample_kernel_sizes = upsample_kernel_sizes |
|
self.segment_size = segment_size |
|
self.gin_channels = gin_channels |
|
|
|
self.enc_p = TextEncoder256km( |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
self.dec = GeneratorNSF( |
|
inter_channels, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
sr=sr, |
|
is_half=kwargs["is_half"] |
|
) |
|
self.enc_q = PosteriorEncoder( |
|
spec_channels, |
|
inter_channels, |
|
hidden_channels, |
|
5, |
|
1, |
|
16, |
|
gin_channels=gin_channels, |
|
) |
|
self.flow = ResidualCouplingBlock( |
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels |
|
) |
|
|
|
def remove_weight_norm(self): |
|
self.dec.remove_weight_norm() |
|
self.flow.remove_weight_norm() |
|
self.enc_q.remove_weight_norm() |
|
|
|
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths): |
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) |
|
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=None) |
|
z_p = self.flow(z, y_mask, g=None) |
|
|
|
z_slice, ids_slice = commons.rand_slice_segments( |
|
z, y_lengths, self.segment_size |
|
) |
|
|
|
pitchf = commons.slice_segments2( |
|
pitchf, ids_slice, self.segment_size |
|
) |
|
o = self.dec(z_slice, pitchf,g=None) |
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) |
|
|
|
def infer(self, phone, phone_lengths, pitch, nsff0,max_len=None): |
|
|
|
|
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) |
|
|
|
|
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask |
|
|
|
|
|
z = self.flow(z_p, x_mask, g=None, reverse=True) |
|
|
|
|
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=None) |
|
|
|
|
|
|
|
return o, x_mask, (z, z_p, m_p, logs_p) |