|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
from tqdm import tqdm |
|
|
|
from uvr5_pack.lib_v5 import spec_utils |
|
|
|
|
|
class VocalRemoverValidationSet(torch.utils.data.Dataset): |
|
|
|
def __init__(self, patch_list): |
|
self.patch_list = patch_list |
|
|
|
def __len__(self): |
|
return len(self.patch_list) |
|
|
|
def __getitem__(self, idx): |
|
path = self.patch_list[idx] |
|
data = np.load(path) |
|
|
|
X, y = data['X'], data['y'] |
|
|
|
X_mag = np.abs(X) |
|
y_mag = np.abs(y) |
|
|
|
return X_mag, y_mag |
|
|
|
|
|
def make_pair(mix_dir, inst_dir): |
|
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac'] |
|
|
|
X_list = sorted([ |
|
os.path.join(mix_dir, fname) |
|
for fname in os.listdir(mix_dir) |
|
if os.path.splitext(fname)[1] in input_exts]) |
|
y_list = sorted([ |
|
os.path.join(inst_dir, fname) |
|
for fname in os.listdir(inst_dir) |
|
if os.path.splitext(fname)[1] in input_exts]) |
|
|
|
filelist = list(zip(X_list, y_list)) |
|
|
|
return filelist |
|
|
|
|
|
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist): |
|
if split_mode == 'random': |
|
filelist = make_pair( |
|
os.path.join(dataset_dir, 'mixtures'), |
|
os.path.join(dataset_dir, 'instruments')) |
|
|
|
random.shuffle(filelist) |
|
|
|
if len(val_filelist) == 0: |
|
val_size = int(len(filelist) * val_rate) |
|
train_filelist = filelist[:-val_size] |
|
val_filelist = filelist[-val_size:] |
|
else: |
|
train_filelist = [ |
|
pair for pair in filelist |
|
if list(pair) not in val_filelist] |
|
elif split_mode == 'subdirs': |
|
if len(val_filelist) != 0: |
|
raise ValueError('The `val_filelist` option is not available in `subdirs` mode') |
|
|
|
train_filelist = make_pair( |
|
os.path.join(dataset_dir, 'training/mixtures'), |
|
os.path.join(dataset_dir, 'training/instruments')) |
|
|
|
val_filelist = make_pair( |
|
os.path.join(dataset_dir, 'validation/mixtures'), |
|
os.path.join(dataset_dir, 'validation/instruments')) |
|
|
|
return train_filelist, val_filelist |
|
|
|
|
|
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha): |
|
perm = np.random.permutation(len(X)) |
|
for i, idx in enumerate(tqdm(perm)): |
|
if np.random.uniform() < reduction_rate: |
|
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask) |
|
|
|
if np.random.uniform() < 0.5: |
|
|
|
X[idx] = X[idx, ::-1] |
|
y[idx] = y[idx, ::-1] |
|
if np.random.uniform() < 0.02: |
|
|
|
X[idx] = X[idx].mean(axis=0, keepdims=True) |
|
y[idx] = y[idx].mean(axis=0, keepdims=True) |
|
if np.random.uniform() < 0.02: |
|
|
|
X[idx] = y[idx] |
|
|
|
if np.random.uniform() < mixup_rate and i < len(perm) - 1: |
|
lam = np.random.beta(mixup_alpha, mixup_alpha) |
|
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]] |
|
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]] |
|
|
|
return X, y |
|
|
|
|
|
def make_padding(width, cropsize, offset): |
|
left = offset |
|
roi_size = cropsize - left * 2 |
|
if roi_size == 0: |
|
roi_size = cropsize |
|
right = roi_size - (width % roi_size) + left |
|
|
|
return left, right, roi_size |
|
|
|
|
|
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset): |
|
len_dataset = patches * len(filelist) |
|
|
|
X_dataset = np.zeros( |
|
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64) |
|
y_dataset = np.zeros( |
|
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64) |
|
|
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)): |
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) |
|
coef = np.max([np.abs(X).max(), np.abs(y).max()]) |
|
X, y = X / coef, y / coef |
|
|
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset) |
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') |
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') |
|
|
|
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches) |
|
ends = starts + cropsize |
|
for j in range(patches): |
|
idx = i * patches + j |
|
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]] |
|
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]] |
|
|
|
return X_dataset, y_dataset |
|
|
|
|
|
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset): |
|
patch_list = [] |
|
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset) |
|
os.makedirs(patch_dir, exist_ok=True) |
|
|
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)): |
|
basename = os.path.splitext(os.path.basename(X_path))[0] |
|
|
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) |
|
coef = np.max([np.abs(X).max(), np.abs(y).max()]) |
|
X, y = X / coef, y / coef |
|
|
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset) |
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') |
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') |
|
|
|
len_dataset = int(np.ceil(X.shape[2] / roi_size)) |
|
for j in range(len_dataset): |
|
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j)) |
|
start = j * roi_size |
|
if not os.path.exists(outpath): |
|
np.savez( |
|
outpath, |
|
X=X_pad[:, :, start:start + cropsize], |
|
y=y_pad[:, :, start:start + cropsize]) |
|
patch_list.append(outpath) |
|
|
|
return VocalRemoverValidationSet(patch_list) |
|
|