metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: IndicBERTv2-MLM-Sam-TLM-NER
results: []
IndicBERTv2-MLM-Sam-TLM-NER
This model is a fine-tuned version of ai4bharat/IndicBERTv2-MLM-Sam-TLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4521
- Precision: 0.7629
- Recall: 0.7792
- F1: 0.7710
- Accuracy: 0.9038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3268 | 0.49 | 1000 | 0.3440 | 0.7207 | 0.7602 | 0.7399 | 0.8887 |
0.2763 | 0.99 | 2000 | 0.3083 | 0.7568 | 0.7732 | 0.7649 | 0.8983 |
0.2604 | 1.48 | 3000 | 0.3312 | 0.7309 | 0.7494 | 0.7401 | 0.8909 |
0.2501 | 1.98 | 4000 | 0.3017 | 0.7415 | 0.7956 | 0.7676 | 0.9014 |
0.2269 | 2.47 | 5000 | 0.2930 | 0.7528 | 0.7970 | 0.7743 | 0.9050 |
0.223 | 2.96 | 6000 | 0.2963 | 0.7590 | 0.7963 | 0.7772 | 0.9053 |
0.2011 | 3.46 | 7000 | 0.2939 | 0.7627 | 0.7946 | 0.7783 | 0.9079 |
0.1999 | 3.95 | 8000 | 0.3036 | 0.7676 | 0.7903 | 0.7788 | 0.9069 |
0.1815 | 4.44 | 9000 | 0.3125 | 0.7618 | 0.7915 | 0.7764 | 0.9056 |
0.1777 | 4.94 | 10000 | 0.3083 | 0.7748 | 0.7957 | 0.7851 | 0.9098 |
0.1622 | 5.43 | 11000 | 0.3251 | 0.7721 | 0.7909 | 0.7814 | 0.9089 |
0.1598 | 5.93 | 12000 | 0.3197 | 0.7767 | 0.7947 | 0.7856 | 0.9092 |
0.145 | 6.42 | 13000 | 0.3366 | 0.7718 | 0.7986 | 0.7850 | 0.9101 |
0.1436 | 6.91 | 14000 | 0.3247 | 0.7776 | 0.7977 | 0.7875 | 0.9112 |
0.1306 | 7.41 | 15000 | 0.3502 | 0.7779 | 0.7958 | 0.7867 | 0.9107 |
0.1311 | 7.9 | 16000 | 0.3585 | 0.7857 | 0.7909 | 0.7883 | 0.9105 |
0.12 | 8.4 | 17000 | 0.3717 | 0.7768 | 0.7911 | 0.7839 | 0.9099 |
0.1202 | 8.89 | 18000 | 0.3667 | 0.7796 | 0.7882 | 0.7839 | 0.9100 |
0.1141 | 9.38 | 19000 | 0.3860 | 0.7857 | 0.7900 | 0.7879 | 0.9100 |
0.1113 | 9.88 | 20000 | 0.3824 | 0.7758 | 0.7970 | 0.7862 | 0.9094 |
0.1056 | 10.37 | 21000 | 0.4041 | 0.7740 | 0.7952 | 0.7845 | 0.9084 |
0.1073 | 10.86 | 22000 | 0.4062 | 0.7735 | 0.7929 | 0.7831 | 0.9094 |
0.1063 | 11.36 | 23000 | 0.4197 | 0.7720 | 0.7866 | 0.7793 | 0.9071 |
0.1026 | 11.85 | 24000 | 0.4179 | 0.7625 | 0.7767 | 0.7695 | 0.9040 |
0.1042 | 12.35 | 25000 | 0.4392 | 0.7639 | 0.7748 | 0.7693 | 0.9037 |
0.101 | 12.84 | 26000 | 0.4373 | 0.7533 | 0.7795 | 0.7662 | 0.9029 |
0.1003 | 13.33 | 27000 | 0.4554 | 0.7535 | 0.7774 | 0.7653 | 0.9021 |
0.0993 | 13.83 | 28000 | 0.4530 | 0.7555 | 0.7773 | 0.7663 | 0.9019 |
0.0978 | 14.32 | 29000 | 0.4467 | 0.7637 | 0.7843 | 0.7738 | 0.9050 |
0.0946 | 14.81 | 30000 | 0.4521 | 0.7629 | 0.7792 | 0.7710 | 0.9038 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3