livinNector's picture
update model card README.md
9e2df54
|
raw
history blame
4.29 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: IndicBERTv2-MLM-Sam-TLM-NER
    results: []

IndicBERTv2-MLM-Sam-TLM-NER

This model is a fine-tuned version of ai4bharat/IndicBERTv2-MLM-Sam-TLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4521
  • Precision: 0.7629
  • Recall: 0.7792
  • F1: 0.7710
  • Accuracy: 0.9038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3268 0.49 1000 0.3440 0.7207 0.7602 0.7399 0.8887
0.2763 0.99 2000 0.3083 0.7568 0.7732 0.7649 0.8983
0.2604 1.48 3000 0.3312 0.7309 0.7494 0.7401 0.8909
0.2501 1.98 4000 0.3017 0.7415 0.7956 0.7676 0.9014
0.2269 2.47 5000 0.2930 0.7528 0.7970 0.7743 0.9050
0.223 2.96 6000 0.2963 0.7590 0.7963 0.7772 0.9053
0.2011 3.46 7000 0.2939 0.7627 0.7946 0.7783 0.9079
0.1999 3.95 8000 0.3036 0.7676 0.7903 0.7788 0.9069
0.1815 4.44 9000 0.3125 0.7618 0.7915 0.7764 0.9056
0.1777 4.94 10000 0.3083 0.7748 0.7957 0.7851 0.9098
0.1622 5.43 11000 0.3251 0.7721 0.7909 0.7814 0.9089
0.1598 5.93 12000 0.3197 0.7767 0.7947 0.7856 0.9092
0.145 6.42 13000 0.3366 0.7718 0.7986 0.7850 0.9101
0.1436 6.91 14000 0.3247 0.7776 0.7977 0.7875 0.9112
0.1306 7.41 15000 0.3502 0.7779 0.7958 0.7867 0.9107
0.1311 7.9 16000 0.3585 0.7857 0.7909 0.7883 0.9105
0.12 8.4 17000 0.3717 0.7768 0.7911 0.7839 0.9099
0.1202 8.89 18000 0.3667 0.7796 0.7882 0.7839 0.9100
0.1141 9.38 19000 0.3860 0.7857 0.7900 0.7879 0.9100
0.1113 9.88 20000 0.3824 0.7758 0.7970 0.7862 0.9094
0.1056 10.37 21000 0.4041 0.7740 0.7952 0.7845 0.9084
0.1073 10.86 22000 0.4062 0.7735 0.7929 0.7831 0.9094
0.1063 11.36 23000 0.4197 0.7720 0.7866 0.7793 0.9071
0.1026 11.85 24000 0.4179 0.7625 0.7767 0.7695 0.9040
0.1042 12.35 25000 0.4392 0.7639 0.7748 0.7693 0.9037
0.101 12.84 26000 0.4373 0.7533 0.7795 0.7662 0.9029
0.1003 13.33 27000 0.4554 0.7535 0.7774 0.7653 0.9021
0.0993 13.83 28000 0.4530 0.7555 0.7773 0.7663 0.9019
0.0978 14.32 29000 0.4467 0.7637 0.7843 0.7738 0.9050
0.0946 14.81 30000 0.4521 0.7629 0.7792 0.7710 0.9038

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3