metadata
license: mit
tags:
- generated_from_trainer
model-index:
- name: roberta-base-mnli_ChcE
results: []
roberta-base-mnli_ChcE
This model is a fine-tuned version of WillHeld/roberta-base-mnli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7094
- Acc: 0.8698
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Acc |
---|---|---|---|---|
0.3102 | 0.17 | 2000 | 0.4135 | 0.8545 |
0.3046 | 0.33 | 4000 | 0.4024 | 0.8645 |
0.3038 | 0.5 | 6000 | 0.3936 | 0.8668 |
0.3012 | 0.67 | 8000 | 0.4007 | 0.8625 |
0.2979 | 0.83 | 10000 | 0.4235 | 0.8620 |
0.2997 | 1.0 | 12000 | 0.4031 | 0.8644 |
0.2099 | 1.17 | 14000 | 0.4393 | 0.8633 |
0.2114 | 1.33 | 16000 | 0.4662 | 0.8628 |
0.2147 | 1.5 | 18000 | 0.4331 | 0.8648 |
0.2122 | 1.67 | 20000 | 0.4166 | 0.8702 |
0.2156 | 1.83 | 22000 | 0.4463 | 0.8633 |
0.2117 | 2.0 | 24000 | 0.4637 | 0.8680 |
0.1469 | 2.17 | 26000 | 0.5211 | 0.8681 |
0.1526 | 2.33 | 28000 | 0.5206 | 0.8620 |
0.1494 | 2.5 | 30000 | 0.5168 | 0.8664 |
0.1519 | 2.67 | 32000 | 0.4830 | 0.8700 |
0.152 | 2.84 | 34000 | 0.5465 | 0.8636 |
0.1498 | 3.0 | 36000 | 0.5550 | 0.8680 |
0.1131 | 3.17 | 38000 | 0.6764 | 0.8602 |
0.1135 | 3.34 | 40000 | 0.6200 | 0.8657 |
0.1175 | 3.5 | 42000 | 0.5889 | 0.8671 |
0.1156 | 3.67 | 44000 | 0.6300 | 0.8663 |
0.1104 | 3.84 | 46000 | 0.6045 | 0.8690 |
0.1111 | 4.0 | 48000 | 0.6413 | 0.8694 |
0.086 | 4.17 | 50000 | 0.7271 | 0.8658 |
0.0895 | 4.34 | 52000 | 0.7274 | 0.8683 |
0.0867 | 4.5 | 54000 | 0.7226 | 0.8658 |
0.0886 | 4.67 | 56000 | 0.7182 | 0.8691 |
0.0849 | 4.84 | 58000 | 0.7094 | 0.8698 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.12.1