linoyts's picture
linoyts HF staff
End of training
5ac70e1 verified
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - dora
  - template:sd-lora
widget:
  - text: a <s0><s1> emoji dressed as an easter bunny
    output:
      url: image_0.png
  - text: a <s0><s1> emoji dressed as an easter bunny
    output:
      url: image_1.png
  - text: a <s0><s1> emoji dressed as an easter bunny
    output:
      url: image_2.png
  - text: a <s0><s1> emoji dressed as an easter bunny
    output:
      url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a <s0><s1> emoji
license: openrail++

SDXL LoRA DreamBooth - linoyts/huggy_dora_v4_pivotal

Prompt
a <s0><s1> emoji dressed as an easter bunny
Prompt
a <s0><s1> emoji dressed as an easter bunny
Prompt
a <s0><s1> emoji dressed as an easter bunny
Prompt
a <s0><s1> emoji dressed as an easter bunny

Model description

These are linoyts/huggy_dora_v4_pivotal LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_dora_v4_pivotal', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='linoyts/huggy_dora_v4_pivotal', filename='huggy_dora_v4_pivotal_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('a <s0><s1> emoji dressed as an easter bunny').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.