linoyts's picture
linoyts HF staff
End of training
4fd370c verified
|
raw
history blame
3.91 kB
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: <s0><s1> ad of a <s2><s3> woman wearing headphones
    output:
      url: image_0.png
  - text: <s0><s1> ad of a <s2><s3> woman wearing headphones
    output:
      url: image_1.png
  - text: <s0><s1> ad of a <s2><s3> woman wearing headphones
    output:
      url: image_2.png
  - text: <s0><s1> ad of a <s2><s3> woman wearing headphones
    output:
      url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: an ad in the style of <s0><s1>
license: openrail++

SDXL LoRA DreamBooth - linoyts/2000_ads_linoy_multi

Prompt
<s0><s1> ad of a <s2><s3> woman wearing headphones
Prompt
<s0><s1> ad of a <s2><s3> woman wearing headphones
Prompt
<s0><s1> ad of a <s2><s3> woman wearing headphones
Prompt
<s0><s1> ad of a <s2><s3> woman wearing headphones

Model description

These are linoyts/2000_ads_linoy_multi LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/2000_ads_linoy_multi', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='linoyts/2000_ads_linoy_multi', filename='2000_ads_linoy_multi_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('<s0><s1> ad of a <s2><s3> woman wearing headphones').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

to trigger concept T2K → use <s2><s3> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.