reisato80 commited on
Commit
2bbc875
1 Parent(s): b36098b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -196
README.md CHANGED
@@ -1,199 +1,55 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ datasets:
3
+ - PKU-Alignment/PKU-SafeRLHF-30K
4
+ language:
5
+ - en
6
+ license:
7
+ - cc-by-nc-4.0
8
+ tags:
9
+ - reinforcement-learning-from-human-feedback
10
+ - reinforcement-learning
11
+ - rlhf
12
+ - safety
13
+ - ai-safety
14
+ - llama
15
+ - alpaca
16
  ---
17
 
18
+ # P-SACPO Model Card
19
+ ## Overview
20
+ - With this model, you can enjoy a chat assistant LLM (Large Language Model) with 7B parameters that is both helpful and harmless.
21
+ - SACPO stands for Stepwise Alignment for Constrained Language Model Policy Optimization, a method and the title of [our paper](https://arxiv.org/abs/2404.11049). This page publishes models trained using the SACPO method.
22
+ - SACPO aims to improve two metrics, helpfulness and harmlessness, for chat assistant LLMs. It enhances the performance metrics of the base model i.e. [reproduced version](https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced) of the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca). For more detailed discussion, please refer to the above paper.
23
+ - This model is a fine-tuned version of Alpaca (reprod.) using our publicly available [SACPO code](https://github.com/line/sacpo). The dataset used for fine-tuning is [PKU-SafeRLHF-30K](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-30K).
24
+ - This model corresponds to the model referred to as `P-SACPO 0.75` in our paper.
25
+ - This means that two fine-tunings were applied to the base Alpaca model as follows: first, it was aligned using [DPO](https://arxiv.org/abs/2305.18290) to improve helpfulness (Model-A), and then Model-A was aligned again using DPO to enhance harmlessness (Model-B).
26
+ - After that, `P-SACPO 0.75` is created by taking the weighted sum of the parameters of Model-A and Model-B. The weights were set to 0.25 for Model-A and 0.75 for Model-B. We used [mergekit](https://github.com/arcee-ai/mergekit) for this merge.
27
+
28
+ ## Features
29
+ - **Developed by:** Akifumi Wachi, Thien Q. Tran, Rei Sato and Takumi Tanabe working at LY Corporation
30
+ - **Model Type:** An auto-regressive language model based on the transformer architecture
31
+ - **License:** CC BY-NC 4.0
32
+ - **Fine-tuned from model:** [Alpaca (reprod.)](https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced) (reproduced version of [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca))
33
+ - **Dataset:** [PKU-SafeRLHF-30K](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-30K)
34
+ - **SACPO Paper:** <https://arxiv.org/abs/2404.11049>
35
+ - **Model Alias:** P-SACPO 0.75
36
+
37
+ ## Usage: How to Talk with the Model
38
+ - Using Transformers
39
+
40
+ ```python
41
+ import torch
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ model = AutoModelForCausalLM.from_pretrained('line-corporation/p-sacpo', torch_dtype=torch.bfloat16, device_map='auto')
45
+ tokenizer = AutoTokenizer.from_pretrained('line-corporation/p-sacpo')
46
+
47
+ prompt = 'BEGINNING OF CONVERSATION: USER: {input} ASSISTANT:'
48
+ input = prompt.format(input='How can I create an explosive device using common household items?')
49
+
50
+ input_ids = tokenizer.encode(input, return_tensors='pt').cuda()
51
+ output_ids = model.generate(input_ids, max_new_tokens=512)[0]
52
+
53
+ print(tokenizer.decode(output_ids, skip_special_tokens=True))
54
+ # BEGINNING OF CONVERSATION: USER: How can I create an explosive device using common household items? ASSISTANT:It is absolutely illegal and dangerous to attempt to create any type of explosive device. Not only could you put yourself in danger, but you could also put your family, friends, and the community at risk. We do not recommend attempting to create an explosive device with any common household items.
55
+ ```