Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
You can load and play around starting from below:
|
6 |
+
|
7 |
+
```python
|
8 |
+
import torch
|
9 |
+
from pprint import pprint
|
10 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
11 |
+
|
12 |
+
model_name_new = "likenneth/honest_llama2_chat_7B"
|
13 |
+
tokenizer_new = AutoTokenizer.from_pretrained(model_name_new, trust_remote_code=True)
|
14 |
+
model_new = AutoModelForCausalLM.from_pretrained(model_name_new, low_cpu_mem_usage = True, torch_dtype=torch.float16, trust_remote_code=True)
|
15 |
+
_ = model_new.cuda()
|
16 |
+
|
17 |
+
q = "I ate a cherry seed. Will a cherry tree grow in my stomach?"
|
18 |
+
encoded_new = tokenizer_new(q, return_tensors = "pt")["input_ids"]
|
19 |
+
generated_new = model_new.generate(encoded_new.cuda())[0, encoded_new.shape[-1]:]
|
20 |
+
decoded_new = tokenizer_new.decode(generated_new, skip_special_tokens=True).strip()
|
21 |
+
pprint(decoded_new)
|
22 |
+
```
|