Update README.md
Browse files
README.md
CHANGED
@@ -1,97 +1,43 @@
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
pipeline_tag: text-generation
|
|
|
5 |
tags:
|
6 |
-
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
<br>
|
20 |
|
|
|
21 |
|
22 |
-
|
23 |
-
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
|
24 |
|
25 |
-
|
26 |
-
The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
|
27 |
-
```
|
28 |
-
KeyError: 'qwen2'
|
29 |
-
```
|
30 |
|
|
|
31 |
|
32 |
-
##
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
The evaluation of base models mainly focuses on the model performance of natural language understanding, general question answering, coding, mathematics, scientific knowledge, reasoning, multilingual capability, etc.
|
40 |
-
|
41 |
-
The datasets for evaluation include:
|
42 |
-
|
43 |
-
**English Tasks**: MMLU (5-shot), MMLU-Pro (5-shot), GPQA (5shot), Theorem QA (5-shot), BBH (3-shot), HellaSwag (10-shot), Winogrande (5-shot), TruthfulQA (0-shot), ARC-C (25-shot)
|
44 |
-
|
45 |
-
**Coding Tasks**: EvalPlus (0-shot) (HumanEval, MBPP, HumanEval+, MBPP+), MultiPL-E (0-shot) (Python, C++, JAVA, PHP, TypeScript, C#, Bash, JavaScript)
|
46 |
-
|
47 |
-
**Math Tasks**: GSM8K (4-shot), MATH (4-shot)
|
48 |
-
|
49 |
-
**Chinese Tasks**: C-Eval(5-shot), CMMLU (5-shot)
|
50 |
-
|
51 |
-
**Multilingual Tasks**: Multi-Exam (M3Exam 5-shot, IndoMMLU 3-shot, ruMMLU 5-shot, mMMLU 5-shot), Multi-Understanding (BELEBELE 5-shot, XCOPA 5-shot, XWinograd 5-shot, XStoryCloze 0-shot, PAWS-X 5-shot), Multi-Mathematics (MGSM 8-shot), Multi-Translation (Flores-101 5-shot)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
#### Qwen2-7B performance
|
56 |
-
| Datasets | Mistral-7B | Gemma-7B | Llama-3-8B | Qwen1.5-7B | Qwen2-7B |
|
57 |
-
| :--------| :---------: | :------------: | :------------: | :------------: | :------------: |
|
58 |
-
|# Params | 7.2B | 8.5B | 8.0B | 7.7B | 7.6B |
|
59 |
-
|# Non-emb Params | 7.0B | 7.8B | 7.0B | 6.5B | 6.5B |
|
60 |
-
| ***English*** | | | | | |
|
61 |
-
|MMLU | 64.2 | 64.6 | 66.6 | 61.0 | **70.3** |
|
62 |
-
|MMLU-Pro | 30.9 | 33.7 | 35.4 | 29.9 | **40.0** |
|
63 |
-
|GPQA | 24.7 | 25.7 | 25.8 | 26.7 | **31.8** |
|
64 |
-
|Theorem QA | 19.2 | 21.5 | 22.1 | 14.2 | **31.1** |
|
65 |
-
|BBH | 56.1 | 55.1 | 57.7 | 40.2 | **62.6** |
|
66 |
-
|HellaSwag | **83.2** | 82.2 | 82.1 | 78.5 | 80.7 |
|
67 |
-
|Winogrande | 78.4 | **79.0** | 77.4 | 71.3 | 77.0 |
|
68 |
-
|ARC-C | 60.0 | **61.1** | 59.3 | 54.2 | 60.6 |
|
69 |
-
|TruthfulQA | 42.2 | 44.8 | 44.0 | 51.1 | **54.2** |
|
70 |
-
| ***Coding*** | | | | | |
|
71 |
-
|HumanEval | 29.3 | 37.2 | 33.5 | 36.0 | **51.2** |
|
72 |
-
|MBPP | 51.1 | 50.6 | 53.9 | 51.6 | **65.9** |
|
73 |
-
|EvalPlus | 36.4 | 39.6 | 40.3 | 40.0 | **54.2** |
|
74 |
-
|MultiPL-E | 29.4 | 29.7 | 22.6 | 28.1 | **46.3** |
|
75 |
-
| ***Mathematics*** | | | | | |
|
76 |
-
|GSM8K | 52.2 | 46.4 | 56.0 | 62.5 | **79.9** |
|
77 |
-
|MATH | 13.1 | 24.3 | 20.5 | 20.3 | **44.2** |
|
78 |
-
| ***Chinese*** | | | | | |
|
79 |
-
|C-Eval | 47.4 | 43.6 | 49.5 | 74.1 | **83.2** |
|
80 |
-
|CMMLU | - | - | 50.8 | 73.1 | **83.9** |
|
81 |
-
| ***Multilingual*** | | | | | |
|
82 |
-
|Multi-Exam | 47.1 | 42.7 | 52.3 | 47.7 | **59.2** |
|
83 |
-
|Multi-Understanding | 63.3 | 58.3 | 68.6 | 67.6 | **72.0** |
|
84 |
-
|Multi-Mathematics | 26.3 | 39.1 | 36.3 | 37.3 | **57.5** |
|
85 |
-
|Multi-Translation | 23.3 | 31.2 | **31.9** | 28.4 | 31.5 |
|
86 |
-
|
87 |
-
|
88 |
-
## Citation
|
89 |
-
|
90 |
-
If you find our work helpful, feel free to give us a cite.
|
91 |
-
|
92 |
-
```
|
93 |
-
@article{qwen2,
|
94 |
-
title={Qwen2 Technical Report},
|
95 |
-
year={2024}
|
96 |
-
}
|
97 |
-
```
|
|
|
1 |
---
|
2 |
+
extra_gated_heading: Access LLMLight-LightGPT on Hugging Face
|
3 |
language:
|
4 |
- en
|
5 |
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
tags:
|
8 |
+
- pytorch
|
9 |
+
- llama-2
|
10 |
+
- traffic signal control
|
11 |
+
- lightgpt
|
12 |
+
- llmlight
|
13 |
+
license: mit
|
14 |
---
|
15 |
|
16 |
+
# LLMLight: Large Language Models as Traffic Signal Control Agents
|
17 |
|
18 |
+
<p align="center">
|
19 |
|
20 |
+
| **[1 Introduction](#introduction)**
|
21 |
+
| **[2 Framework](#framework)**
|
22 |
+
| **[3 Demo](#demo)**
|
23 |
+
| **[Repository](https://anonymous.4open.science/r/LLMLight-D8C4/)**|
|
24 |
|
25 |
+
</p>
|
26 |
|
27 |
+
<a id="introduction"></a>
|
|
|
28 |
|
29 |
+
## 1 Introduction
|
30 |
|
31 |
+
Model weights trained in the article LLMLight: Large Language Models as Traffic Signal Control Agents.
|
|
|
32 |
|
33 |
+
Please download the model and run LLMLight by following the descriptions in the [Repository](https://anonymous.4open.science/r/LLMLight-D8C4/).
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
<a id="framework"></a>
|
36 |
|
37 |
+
## 2 Framework
|
38 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64207ca7e40f66bcd1e44959/HDBvVmYkTdShGfY5mnPGs.png)
|
39 |
|
40 |
+
<a id="demo"></a>
|
41 |
|
42 |
+
## 3 Demo
|
43 |
+
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/64207ca7e40f66bcd1e44959/VhMOdEIjKeLml1WPcINqV.qt"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|