ptrdvn commited on
Commit
884eb34
·
verified ·
1 Parent(s): f0eba3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -2
README.md CHANGED
@@ -1,5 +1,8 @@
1
  ---
2
  license: other
 
 
 
3
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
4
  tags:
5
  - generated_from_trainer
@@ -8,8 +11,45 @@ model-index:
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
  <details><summary>See axolotl config</summary>
 
1
  ---
2
  license: other
3
+ license_name: llama-3
4
+ license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
5
+
6
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
7
  tags:
8
  - generated_from_trainer
 
11
  results: []
12
  ---
13
 
14
+ <p align="center">
15
+ <img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
16
+ </p>
17
+
18
+ # Suzume
19
+
20
+ This Suzume 8B, a Japanese finetune of Llama 3.
21
+
22
+ Llama 3 has exhibited excellent performance on many English language benchmarks.
23
+ However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in Japanese.
24
+
25
+ We have fine-tuned Llama 3 on almost 3,000 Japanese conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in Japanese.
26
+
27
+ Please feel free to comment on this model and give us feedback in the Community tab!
28
+
29
+ # How to use
30
+
31
+ You can use the original trained model with vLLM like so:
32
+
33
+ ```python
34
+ from vllm import LLM, SamplingParams
35
+
36
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
37
+
38
+ llm = LLM(model="lightblue/suzume-llama-3-8B-japanese")
39
+
40
+ prompts = [
41
+ "東京のおすすめの観光スポットを教えて下さい",
42
+ ]
43
+
44
+ outputs = llm.generate(prompts, sampling_params)
45
+
46
+ for output in outputs:
47
+ prompt = output.prompt
48
+ generated_text = output.outputs[0].text
49
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
50
+ ```
51
+
52
+ # Training config
53
 
54
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
55
  <details><summary>See axolotl config</summary>