ptrdvn commited on
Commit
e1e762a
·
verified ·
1 Parent(s): ccebab2

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: orpo_trained_2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # orpo_trained_2
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the lightblue_orpo_data dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 16
45
+ - total_train_batch_size: 128
46
+ - total_eval_batch_size: 8
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 1.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.46.1
59
+ - Pytorch 2.4.0+cu121
60
+ - Datasets 3.1.0
61
+ - Tokenizers 0.20.3
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9982859101816935,
3
+ "total_flos": 58779245903872.0,
4
+ "train_loss": 0.7302135016236987,
5
+ "train_runtime": 13700.9712,
6
+ "train_samples_per_second": 1.703,
7
+ "train_steps_per_second": 0.013
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c75d15ff973fedfb592907883d81ae7310b55d85a0174aea5f0da8a04cb33e0d
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32fd0747bad48e5baa6364d57c6944fc9c6dd2d071cca0804ea985dbeae33349
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700f0550c69e3ce046a13cc451cf5f968356cee53d7174a27340868274fbafe8
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4d24169e962a22e96df9522be97b2696410356790cceea65e30f18320262616
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9982859101816935,
3
+ "total_flos": 58779245903872.0,
4
+ "train_loss": 0.7302135016236987,
5
+ "train_runtime": 13700.9712,
6
+ "train_samples_per_second": 1.703,
7
+ "train_steps_per_second": 0.013
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 182, "loss": 0.8549, "accuracy": 0.328125, "lr": 5.263157894736843e-07, "epoch": 0.005485087418580734, "percentage": 0.55, "elapsed_time": "0:01:19", "remaining_time": "4:00:52"}
2
+ {"current_steps": 2, "total_steps": 182, "loss": 0.8261, "accuracy": 0.3671875, "lr": 1.0526315789473685e-06, "epoch": 0.010970174837161468, "percentage": 1.1, "elapsed_time": "0:02:33", "remaining_time": "3:50:21"}
3
+ {"current_steps": 3, "total_steps": 182, "loss": 0.8054, "accuracy": 0.375, "lr": 1.5789473684210526e-06, "epoch": 0.0164552622557422, "percentage": 1.65, "elapsed_time": "0:03:53", "remaining_time": "3:51:46"}
4
+ {"current_steps": 4, "total_steps": 182, "loss": 0.8329, "accuracy": 0.4140625, "lr": 2.105263157894737e-06, "epoch": 0.021940349674322936, "percentage": 2.2, "elapsed_time": "0:05:08", "remaining_time": "3:49:09"}
5
+ {"current_steps": 5, "total_steps": 182, "loss": 0.7966, "accuracy": 0.3359375, "lr": 2.631578947368421e-06, "epoch": 0.027425437092903668, "percentage": 2.75, "elapsed_time": "0:06:26", "remaining_time": "3:47:58"}
6
+ {"current_steps": 6, "total_steps": 182, "loss": 0.8222, "accuracy": 0.375, "lr": 3.157894736842105e-06, "epoch": 0.0329105245114844, "percentage": 3.3, "elapsed_time": "0:07:41", "remaining_time": "3:45:33"}
7
+ {"current_steps": 7, "total_steps": 182, "loss": 0.7481, "accuracy": 0.4140625, "lr": 3.6842105263157896e-06, "epoch": 0.03839561193006513, "percentage": 3.85, "elapsed_time": "0:08:56", "remaining_time": "3:43:39"}
8
+ {"current_steps": 8, "total_steps": 182, "loss": 0.7817, "accuracy": 0.390625, "lr": 4.210526315789474e-06, "epoch": 0.04388069934864587, "percentage": 4.4, "elapsed_time": "0:10:15", "remaining_time": "3:43:04"}
9
+ {"current_steps": 9, "total_steps": 182, "loss": 0.8647, "accuracy": 0.265625, "lr": 4.736842105263158e-06, "epoch": 0.049365786767226603, "percentage": 4.95, "elapsed_time": "0:11:33", "remaining_time": "3:42:07"}
10
+ {"current_steps": 10, "total_steps": 182, "loss": 0.8793, "accuracy": 0.28125, "lr": 5.263157894736842e-06, "epoch": 0.054850874185807336, "percentage": 5.49, "elapsed_time": "0:12:48", "remaining_time": "3:40:24"}
11
+ {"current_steps": 11, "total_steps": 182, "loss": 0.8159, "accuracy": 0.3359375, "lr": 5.789473684210527e-06, "epoch": 0.06033596160438807, "percentage": 6.04, "elapsed_time": "0:14:04", "remaining_time": "3:38:47"}
12
+ {"current_steps": 12, "total_steps": 182, "loss": 0.8272, "accuracy": 0.296875, "lr": 6.31578947368421e-06, "epoch": 0.0658210490229688, "percentage": 6.59, "elapsed_time": "0:15:19", "remaining_time": "3:37:09"}
13
+ {"current_steps": 13, "total_steps": 182, "loss": 0.7821, "accuracy": 0.34375, "lr": 6.842105263157896e-06, "epoch": 0.07130613644154954, "percentage": 7.14, "elapsed_time": "0:16:35", "remaining_time": "3:35:36"}
14
+ {"current_steps": 14, "total_steps": 182, "loss": 0.8562, "accuracy": 0.3515625, "lr": 7.368421052631579e-06, "epoch": 0.07679122386013026, "percentage": 7.69, "elapsed_time": "0:17:53", "remaining_time": "3:34:41"}
15
+ {"current_steps": 15, "total_steps": 182, "loss": 0.8106, "accuracy": 0.375, "lr": 7.894736842105265e-06, "epoch": 0.082276311278711, "percentage": 8.24, "elapsed_time": "0:19:06", "remaining_time": "3:32:48"}
16
+ {"current_steps": 16, "total_steps": 182, "loss": 0.8113, "accuracy": 0.359375, "lr": 8.421052631578948e-06, "epoch": 0.08776139869729174, "percentage": 8.79, "elapsed_time": "0:20:24", "remaining_time": "3:31:45"}
17
+ {"current_steps": 17, "total_steps": 182, "loss": 0.8323, "accuracy": 0.3125, "lr": 8.947368421052632e-06, "epoch": 0.09324648611587247, "percentage": 9.34, "elapsed_time": "0:21:41", "remaining_time": "3:30:30"}
18
+ {"current_steps": 18, "total_steps": 182, "loss": 0.8107, "accuracy": 0.453125, "lr": 9.473684210526315e-06, "epoch": 0.09873157353445321, "percentage": 9.89, "elapsed_time": "0:22:56", "remaining_time": "3:28:58"}
19
+ {"current_steps": 19, "total_steps": 182, "loss": 0.7743, "accuracy": 0.375, "lr": 1e-05, "epoch": 0.10421666095303393, "percentage": 10.44, "elapsed_time": "0:24:06", "remaining_time": "3:26:50"}
20
+ {"current_steps": 20, "total_steps": 182, "loss": 0.7844, "accuracy": 0.359375, "lr": 9.999071352056676e-06, "epoch": 0.10970174837161467, "percentage": 10.99, "elapsed_time": "0:25:21", "remaining_time": "3:25:27"}
21
+ {"current_steps": 21, "total_steps": 182, "loss": 0.8091, "accuracy": 0.3359375, "lr": 9.996285753181499e-06, "epoch": 0.11518683579019541, "percentage": 11.54, "elapsed_time": "0:26:35", "remaining_time": "3:23:51"}
22
+ {"current_steps": 22, "total_steps": 182, "loss": 0.7769, "accuracy": 0.328125, "lr": 9.991644238110741e-06, "epoch": 0.12067192320877614, "percentage": 12.09, "elapsed_time": "0:27:50", "remaining_time": "3:22:28"}
23
+ {"current_steps": 23, "total_steps": 182, "loss": 0.7573, "accuracy": 0.3203125, "lr": 9.985148530977767e-06, "epoch": 0.12615701062735687, "percentage": 12.64, "elapsed_time": "0:29:03", "remaining_time": "3:20:53"}
24
+ {"current_steps": 24, "total_steps": 182, "loss": 0.7376, "accuracy": 0.3984375, "lr": 9.976801044672608e-06, "epoch": 0.1316420980459376, "percentage": 13.19, "elapsed_time": "0:30:16", "remaining_time": "3:19:20"}
25
+ {"current_steps": 25, "total_steps": 182, "loss": 0.735, "accuracy": 0.40625, "lr": 9.966604879945659e-06, "epoch": 0.13712718546451835, "percentage": 13.74, "elapsed_time": "0:31:30", "remaining_time": "3:17:54"}
26
+ {"current_steps": 26, "total_steps": 182, "loss": 0.7183, "accuracy": 0.4296875, "lr": 9.954563824255879e-06, "epoch": 0.14261227288309908, "percentage": 14.29, "elapsed_time": "0:32:46", "remaining_time": "3:16:36"}
27
+ {"current_steps": 27, "total_steps": 182, "loss": 0.7592, "accuracy": 0.328125, "lr": 9.940682350363913e-06, "epoch": 0.1480973603016798, "percentage": 14.84, "elapsed_time": "0:34:01", "remaining_time": "3:15:20"}
28
+ {"current_steps": 28, "total_steps": 182, "loss": 0.7587, "accuracy": 0.3828125, "lr": 9.924965614670629e-06, "epoch": 0.15358244772026053, "percentage": 15.38, "elapsed_time": "0:35:17", "remaining_time": "3:14:03"}
29
+ {"current_steps": 29, "total_steps": 182, "loss": 0.873, "accuracy": 0.2890625, "lr": 9.90741945530174e-06, "epoch": 0.15906753513884128, "percentage": 15.93, "elapsed_time": "0:36:29", "remaining_time": "3:12:31"}
30
+ {"current_steps": 30, "total_steps": 182, "loss": 0.796, "accuracy": 0.4140625, "lr": 9.888050389939172e-06, "epoch": 0.164552622557422, "percentage": 16.48, "elapsed_time": "0:37:44", "remaining_time": "3:11:13"}
31
+ {"current_steps": 31, "total_steps": 182, "loss": 0.8005, "accuracy": 0.3828125, "lr": 9.866865613400008e-06, "epoch": 0.17003770997600273, "percentage": 17.03, "elapsed_time": "0:39:03", "remaining_time": "3:10:16"}
32
+ {"current_steps": 32, "total_steps": 182, "loss": 0.754, "accuracy": 0.34375, "lr": 9.843872994963912e-06, "epoch": 0.17552279739458349, "percentage": 17.58, "elapsed_time": "0:40:20", "remaining_time": "3:09:05"}
33
+ {"current_steps": 33, "total_steps": 182, "loss": 0.7394, "accuracy": 0.4453125, "lr": 9.819081075450014e-06, "epoch": 0.1810078848131642, "percentage": 18.13, "elapsed_time": "0:41:32", "remaining_time": "3:07:35"}
34
+ {"current_steps": 34, "total_steps": 182, "loss": 0.7765, "accuracy": 0.3671875, "lr": 9.792499064044343e-06, "epoch": 0.18649297223174494, "percentage": 18.68, "elapsed_time": "0:42:49", "remaining_time": "3:06:26"}
35
+ {"current_steps": 35, "total_steps": 182, "loss": 0.7545, "accuracy": 0.390625, "lr": 9.764136834878987e-06, "epoch": 0.1919780596503257, "percentage": 19.23, "elapsed_time": "0:44:06", "remaining_time": "3:05:14"}
36
+ {"current_steps": 36, "total_steps": 182, "loss": 0.8155, "accuracy": 0.375, "lr": 9.734004923364258e-06, "epoch": 0.19746314706890641, "percentage": 19.78, "elapsed_time": "0:45:26", "remaining_time": "3:04:18"}
37
+ {"current_steps": 37, "total_steps": 182, "loss": 0.7927, "accuracy": 0.375, "lr": 9.702114522275216e-06, "epoch": 0.20294823448748714, "percentage": 20.33, "elapsed_time": "0:46:41", "remaining_time": "3:03:00"}
38
+ {"current_steps": 38, "total_steps": 182, "loss": 0.7763, "accuracy": 0.4375, "lr": 9.668477477594021e-06, "epoch": 0.20843332190606786, "percentage": 20.88, "elapsed_time": "0:47:53", "remaining_time": "3:01:29"}
39
+ {"current_steps": 39, "total_steps": 182, "loss": 0.7526, "accuracy": 0.3515625, "lr": 9.633106284109612e-06, "epoch": 0.21391840932464862, "percentage": 21.43, "elapsed_time": "0:49:12", "remaining_time": "3:00:24"}
40
+ {"current_steps": 40, "total_steps": 182, "loss": 0.8228, "accuracy": 0.3125, "lr": 9.596014080776424e-06, "epoch": 0.21940349674322934, "percentage": 21.98, "elapsed_time": "0:50:28", "remaining_time": "2:59:11"}
41
+ {"current_steps": 41, "total_steps": 182, "loss": 0.7528, "accuracy": 0.3515625, "lr": 9.557214645833792e-06, "epoch": 0.22488858416181007, "percentage": 22.53, "elapsed_time": "0:51:43", "remaining_time": "2:57:54"}
42
+ {"current_steps": 42, "total_steps": 182, "loss": 0.846, "accuracy": 0.25, "lr": 9.516722391687903e-06, "epoch": 0.23037367158039082, "percentage": 23.08, "elapsed_time": "0:53:01", "remaining_time": "2:56:44"}
43
+ {"current_steps": 43, "total_steps": 182, "loss": 0.736, "accuracy": 0.375, "lr": 9.474552359558167e-06, "epoch": 0.23585875899897155, "percentage": 23.63, "elapsed_time": "0:54:14", "remaining_time": "2:55:20"}
44
+ {"current_steps": 44, "total_steps": 182, "loss": 0.7783, "accuracy": 0.375, "lr": 9.43072021389003e-06, "epoch": 0.24134384641755227, "percentage": 24.18, "elapsed_time": "0:55:27", "remaining_time": "2:53:55"}
45
+ {"current_steps": 45, "total_steps": 182, "loss": 0.7556, "accuracy": 0.40625, "lr": 9.385242236536259e-06, "epoch": 0.24682893383613302, "percentage": 24.73, "elapsed_time": "0:56:43", "remaining_time": "2:52:40"}
46
+ {"current_steps": 46, "total_steps": 182, "loss": 0.7338, "accuracy": 0.359375, "lr": 9.338135320708912e-06, "epoch": 0.25231402125471375, "percentage": 25.27, "elapsed_time": "0:57:55", "remaining_time": "2:51:15"}
47
+ {"current_steps": 47, "total_steps": 182, "loss": 0.7248, "accuracy": 0.3359375, "lr": 9.289416964704186e-06, "epoch": 0.2577991086732945, "percentage": 25.82, "elapsed_time": "0:59:19", "remaining_time": "2:50:24"}
48
+ {"current_steps": 48, "total_steps": 182, "loss": 0.692, "accuracy": 0.40625, "lr": 9.239105265402525e-06, "epoch": 0.2632841960918752, "percentage": 26.37, "elapsed_time": "1:00:33", "remaining_time": "2:49:02"}
49
+ {"current_steps": 49, "total_steps": 182, "loss": 0.7632, "accuracy": 0.34375, "lr": 9.187218911546363e-06, "epoch": 0.2687692835104559, "percentage": 26.92, "elapsed_time": "1:01:47", "remaining_time": "2:47:42"}
50
+ {"current_steps": 50, "total_steps": 182, "loss": 0.7371, "accuracy": 0.4453125, "lr": 9.133777176798013e-06, "epoch": 0.2742543709290367, "percentage": 27.47, "elapsed_time": "1:03:01", "remaining_time": "2:46:23"}
51
+ {"current_steps": 51, "total_steps": 182, "loss": 0.6819, "accuracy": 0.40625, "lr": 9.078799912580305e-06, "epoch": 0.27973945834761743, "percentage": 28.02, "elapsed_time": "1:04:16", "remaining_time": "2:45:06"}
52
+ {"current_steps": 52, "total_steps": 182, "loss": 0.7754, "accuracy": 0.34375, "lr": 9.022307540702576e-06, "epoch": 0.28522454576619816, "percentage": 28.57, "elapsed_time": "1:05:28", "remaining_time": "2:43:40"}
53
+ {"current_steps": 53, "total_steps": 182, "loss": 0.7415, "accuracy": 0.4140625, "lr": 8.964321045774808e-06, "epoch": 0.2907096331847789, "percentage": 29.12, "elapsed_time": "1:06:40", "remaining_time": "2:42:16"}
54
+ {"current_steps": 54, "total_steps": 182, "loss": 0.7525, "accuracy": 0.390625, "lr": 8.904861967412702e-06, "epoch": 0.2961947206033596, "percentage": 29.67, "elapsed_time": "1:07:54", "remaining_time": "2:40:58"}
55
+ {"current_steps": 55, "total_steps": 182, "loss": 0.8548, "accuracy": 0.40625, "lr": 8.843952392236595e-06, "epoch": 0.30167980802194033, "percentage": 30.22, "elapsed_time": "1:09:09", "remaining_time": "2:39:40"}
56
+ {"current_steps": 56, "total_steps": 182, "loss": 0.7044, "accuracy": 0.421875, "lr": 8.78161494566717e-06, "epoch": 0.30716489544052106, "percentage": 30.77, "elapsed_time": "1:10:25", "remaining_time": "2:38:26"}
57
+ {"current_steps": 57, "total_steps": 182, "loss": 0.7258, "accuracy": 0.453125, "lr": 8.717872783521048e-06, "epoch": 0.31264998285910184, "percentage": 31.32, "elapsed_time": "1:11:42", "remaining_time": "2:37:16"}
58
+ {"current_steps": 58, "total_steps": 182, "loss": 0.7223, "accuracy": 0.4453125, "lr": 8.65274958340934e-06, "epoch": 0.31813507027768256, "percentage": 31.87, "elapsed_time": "1:12:56", "remaining_time": "2:35:55"}
59
+ {"current_steps": 59, "total_steps": 182, "loss": 0.7387, "accuracy": 0.4140625, "lr": 8.586269535942386e-06, "epoch": 0.3236201576962633, "percentage": 32.42, "elapsed_time": "1:14:08", "remaining_time": "2:34:33"}
60
+ {"current_steps": 60, "total_steps": 182, "loss": 0.7221, "accuracy": 0.4609375, "lr": 8.518457335743927e-06, "epoch": 0.329105245114844, "percentage": 32.97, "elapsed_time": "1:15:27", "remaining_time": "2:33:25"}
61
+ {"current_steps": 61, "total_steps": 182, "loss": 0.7851, "accuracy": 0.3828125, "lr": 8.44933817227806e-06, "epoch": 0.33459033253342474, "percentage": 33.52, "elapsed_time": "1:16:41", "remaining_time": "2:32:07"}
62
+ {"current_steps": 62, "total_steps": 182, "loss": 0.7209, "accuracy": 0.4609375, "lr": 8.378937720492384e-06, "epoch": 0.34007541995200546, "percentage": 34.07, "elapsed_time": "1:17:59", "remaining_time": "2:30:57"}
63
+ {"current_steps": 63, "total_steps": 182, "loss": 0.7043, "accuracy": 0.3984375, "lr": 8.307282131280805e-06, "epoch": 0.34556050737058625, "percentage": 34.62, "elapsed_time": "1:19:14", "remaining_time": "2:29:41"}
64
+ {"current_steps": 64, "total_steps": 182, "loss": 0.718, "accuracy": 0.4609375, "lr": 8.234398021769541e-06, "epoch": 0.35104559478916697, "percentage": 35.16, "elapsed_time": "1:20:31", "remaining_time": "2:28:28"}
65
+ {"current_steps": 65, "total_steps": 182, "loss": 0.7207, "accuracy": 0.4609375, "lr": 8.160312465429952e-06, "epoch": 0.3565306822077477, "percentage": 35.71, "elapsed_time": "1:21:53", "remaining_time": "2:27:23"}
66
+ {"current_steps": 66, "total_steps": 182, "loss": 0.7019, "accuracy": 0.3984375, "lr": 8.085052982021849e-06, "epoch": 0.3620157696263284, "percentage": 36.26, "elapsed_time": "1:23:07", "remaining_time": "2:26:05"}
67
+ {"current_steps": 67, "total_steps": 182, "loss": 0.7664, "accuracy": 0.4609375, "lr": 8.008647527371022e-06, "epoch": 0.36750085704490915, "percentage": 36.81, "elapsed_time": "1:24:18", "remaining_time": "2:24:42"}
68
+ {"current_steps": 68, "total_steps": 182, "loss": 0.7721, "accuracy": 0.359375, "lr": 7.931124482984802e-06, "epoch": 0.37298594446348987, "percentage": 37.36, "elapsed_time": "1:25:34", "remaining_time": "2:23:27"}
69
+ {"current_steps": 69, "total_steps": 182, "loss": 0.7495, "accuracy": 0.4609375, "lr": 7.85251264550948e-06, "epoch": 0.3784710318820706, "percentage": 37.91, "elapsed_time": "1:26:48", "remaining_time": "2:22:10"}
70
+ {"current_steps": 70, "total_steps": 182, "loss": 0.7216, "accuracy": 0.4609375, "lr": 7.772841216033534e-06, "epoch": 0.3839561193006514, "percentage": 38.46, "elapsed_time": "1:28:02", "remaining_time": "2:20:52"}
71
+ {"current_steps": 71, "total_steps": 182, "loss": 0.7136, "accuracy": 0.375, "lr": 7.692139789240611e-06, "epoch": 0.3894412067192321, "percentage": 39.01, "elapsed_time": "1:29:13", "remaining_time": "2:19:29"}
72
+ {"current_steps": 72, "total_steps": 182, "loss": 0.7414, "accuracy": 0.421875, "lr": 7.61043834241632e-06, "epoch": 0.39492629413781283, "percentage": 39.56, "elapsed_time": "1:30:27", "remaining_time": "2:18:11"}
73
+ {"current_steps": 73, "total_steps": 182, "loss": 0.7309, "accuracy": 0.4296875, "lr": 7.527767224312883e-06, "epoch": 0.40041138155639355, "percentage": 40.11, "elapsed_time": "1:31:41", "remaining_time": "2:16:54"}
74
+ {"current_steps": 74, "total_steps": 182, "loss": 0.7423, "accuracy": 0.390625, "lr": 7.44415714387582e-06, "epoch": 0.4058964689749743, "percentage": 40.66, "elapsed_time": "1:32:54", "remaining_time": "2:15:36"}
75
+ {"current_steps": 75, "total_steps": 182, "loss": 0.7437, "accuracy": 0.4375, "lr": 7.359639158836828e-06, "epoch": 0.411381556393555, "percentage": 41.21, "elapsed_time": "1:34:13", "remaining_time": "2:14:26"}
76
+ {"current_steps": 76, "total_steps": 182, "loss": 0.7396, "accuracy": 0.3359375, "lr": 7.2742446641770985e-06, "epoch": 0.41686664381213573, "percentage": 41.76, "elapsed_time": "1:35:29", "remaining_time": "2:13:11"}
77
+ {"current_steps": 77, "total_steps": 182, "loss": 0.6869, "accuracy": 0.4765625, "lr": 7.188005380465365e-06, "epoch": 0.4223517312307165, "percentage": 42.31, "elapsed_time": "1:36:46", "remaining_time": "2:11:57"}
78
+ {"current_steps": 78, "total_steps": 182, "loss": 0.7559, "accuracy": 0.390625, "lr": 7.10095334207501e-06, "epoch": 0.42783681864929723, "percentage": 42.86, "elapsed_time": "1:38:02", "remaining_time": "2:10:42"}
79
+ {"current_steps": 79, "total_steps": 182, "loss": 0.6881, "accuracy": 0.453125, "lr": 7.013120885284599e-06, "epoch": 0.43332190606787796, "percentage": 43.41, "elapsed_time": "1:39:16", "remaining_time": "2:09:26"}
80
+ {"current_steps": 80, "total_steps": 182, "loss": 0.7421, "accuracy": 0.3515625, "lr": 6.924540636266272e-06, "epoch": 0.4388069934864587, "percentage": 43.96, "elapsed_time": "1:40:30", "remaining_time": "2:08:08"}
81
+ {"current_steps": 81, "total_steps": 182, "loss": 0.7341, "accuracy": 0.4140625, "lr": 6.835245498966461e-06, "epoch": 0.4442920809050394, "percentage": 44.51, "elapsed_time": "1:41:51", "remaining_time": "2:07:01"}
82
+ {"current_steps": 82, "total_steps": 182, "loss": 0.73, "accuracy": 0.4140625, "lr": 6.7452686428834045e-06, "epoch": 0.44977716832362014, "percentage": 45.05, "elapsed_time": "1:43:06", "remaining_time": "2:05:44"}
83
+ {"current_steps": 83, "total_steps": 182, "loss": 0.7136, "accuracy": 0.4375, "lr": 6.654643490746042e-06, "epoch": 0.4552622557422009, "percentage": 45.6, "elapsed_time": "1:44:22", "remaining_time": "2:04:30"}
84
+ {"current_steps": 84, "total_steps": 182, "loss": 0.7196, "accuracy": 0.46875, "lr": 6.563403706098833e-06, "epoch": 0.46074734316078164, "percentage": 46.15, "elapsed_time": "1:45:36", "remaining_time": "2:03:12"}
85
+ {"current_steps": 85, "total_steps": 182, "loss": 0.726, "accuracy": 0.40625, "lr": 6.471583180797121e-06, "epoch": 0.46623243057936237, "percentage": 46.7, "elapsed_time": "1:46:52", "remaining_time": "2:01:58"}
86
+ {"current_steps": 86, "total_steps": 182, "loss": 0.7491, "accuracy": 0.453125, "lr": 6.379216022417695e-06, "epoch": 0.4717175179979431, "percentage": 47.25, "elapsed_time": "1:48:12", "remaining_time": "2:00:47"}
87
+ {"current_steps": 87, "total_steps": 182, "loss": 0.7141, "accuracy": 0.4765625, "lr": 6.286336541589224e-06, "epoch": 0.4772026054165238, "percentage": 47.8, "elapsed_time": "1:49:26", "remaining_time": "1:59:30"}
88
+ {"current_steps": 88, "total_steps": 182, "loss": 0.7336, "accuracy": 0.390625, "lr": 6.192979239247243e-06, "epoch": 0.48268769283510454, "percentage": 48.35, "elapsed_time": "1:50:40", "remaining_time": "1:58:13"}
89
+ {"current_steps": 89, "total_steps": 182, "loss": 0.7111, "accuracy": 0.5078125, "lr": 6.099178793818479e-06, "epoch": 0.48817278025368527, "percentage": 48.9, "elapsed_time": "1:51:55", "remaining_time": "1:56:57"}
90
+ {"current_steps": 90, "total_steps": 182, "loss": 0.7411, "accuracy": 0.390625, "lr": 6.0049700483392256e-06, "epoch": 0.49365786767226605, "percentage": 49.45, "elapsed_time": "1:53:07", "remaining_time": "1:55:38"}
91
+ {"current_steps": 91, "total_steps": 182, "loss": 0.7631, "accuracy": 0.3984375, "lr": 5.910387997512573e-06, "epoch": 0.4991429550908468, "percentage": 50.0, "elapsed_time": "1:54:19", "remaining_time": "1:54:19"}
92
+ {"current_steps": 92, "total_steps": 182, "loss": 0.6749, "accuracy": 0.484375, "lr": 5.815467774709314e-06, "epoch": 0.5046280425094275, "percentage": 50.55, "elapsed_time": "1:55:36", "remaining_time": "1:53:06"}
93
+ {"current_steps": 93, "total_steps": 182, "loss": 0.6945, "accuracy": 0.5078125, "lr": 5.7202446389173225e-06, "epoch": 0.5101131299280083, "percentage": 51.1, "elapsed_time": "1:56:51", "remaining_time": "1:51:50"}
94
+ {"current_steps": 94, "total_steps": 182, "loss": 0.7635, "accuracy": 0.3359375, "lr": 5.624753961644281e-06, "epoch": 0.515598217346589, "percentage": 51.65, "elapsed_time": "1:58:00", "remaining_time": "1:50:28"}
95
+ {"current_steps": 95, "total_steps": 182, "loss": 0.7268, "accuracy": 0.3984375, "lr": 5.529031213778615e-06, "epoch": 0.5210833047651697, "percentage": 52.2, "elapsed_time": "1:59:14", "remaining_time": "1:49:12"}
96
+ {"current_steps": 96, "total_steps": 182, "loss": 0.6895, "accuracy": 0.5234375, "lr": 5.433111952413496e-06, "epoch": 0.5265683921837504, "percentage": 52.75, "elapsed_time": "2:00:30", "remaining_time": "1:47:57"}
97
+ {"current_steps": 97, "total_steps": 182, "loss": 0.7607, "accuracy": 0.390625, "lr": 5.3370318076388405e-06, "epoch": 0.5320534796023312, "percentage": 53.3, "elapsed_time": "2:01:44", "remaining_time": "1:46:41"}
98
+ {"current_steps": 98, "total_steps": 182, "loss": 0.7188, "accuracy": 0.46875, "lr": 5.240826469306187e-06, "epoch": 0.5375385670209119, "percentage": 53.85, "elapsed_time": "2:03:04", "remaining_time": "1:45:29"}
99
+ {"current_steps": 99, "total_steps": 182, "loss": 0.7596, "accuracy": 0.3984375, "lr": 5.144531673771364e-06, "epoch": 0.5430236544394926, "percentage": 54.4, "elapsed_time": "2:04:23", "remaining_time": "1:44:17"}
100
+ {"current_steps": 100, "total_steps": 182, "loss": 0.7085, "accuracy": 0.5, "lr": 5.048183190619904e-06, "epoch": 0.5485087418580734, "percentage": 54.95, "elapsed_time": "2:05:41", "remaining_time": "1:43:04"}
101
+ {"current_steps": 101, "total_steps": 182, "loss": 0.6656, "accuracy": 0.4765625, "lr": 4.951816809380098e-06, "epoch": 0.5539938292766541, "percentage": 55.49, "elapsed_time": "2:06:54", "remaining_time": "1:41:46"}
102
+ {"current_steps": 102, "total_steps": 182, "loss": 0.7458, "accuracy": 0.40625, "lr": 4.855468326228638e-06, "epoch": 0.5594789166952349, "percentage": 56.04, "elapsed_time": "2:08:09", "remaining_time": "1:40:30"}
103
+ {"current_steps": 103, "total_steps": 182, "loss": 0.6848, "accuracy": 0.4140625, "lr": 4.7591735306938144e-06, "epoch": 0.5649640041138155, "percentage": 56.59, "elapsed_time": "2:09:22", "remaining_time": "1:39:13"}
104
+ {"current_steps": 104, "total_steps": 182, "loss": 0.6869, "accuracy": 0.4453125, "lr": 4.662968192361161e-06, "epoch": 0.5704490915323963, "percentage": 57.14, "elapsed_time": "2:10:37", "remaining_time": "1:37:57"}
105
+ {"current_steps": 105, "total_steps": 182, "loss": 0.6716, "accuracy": 0.46875, "lr": 4.5668880475865074e-06, "epoch": 0.575934178950977, "percentage": 57.69, "elapsed_time": "2:11:47", "remaining_time": "1:36:38"}
106
+ {"current_steps": 106, "total_steps": 182, "loss": 0.7281, "accuracy": 0.4765625, "lr": 4.4709687862213866e-06, "epoch": 0.5814192663695578, "percentage": 58.24, "elapsed_time": "2:13:03", "remaining_time": "1:35:24"}
107
+ {"current_steps": 107, "total_steps": 182, "loss": 0.7412, "accuracy": 0.390625, "lr": 4.3752460383557195e-06, "epoch": 0.5869043537881385, "percentage": 58.79, "elapsed_time": "2:14:17", "remaining_time": "1:34:07"}
108
+ {"current_steps": 108, "total_steps": 182, "loss": 0.6546, "accuracy": 0.453125, "lr": 4.27975536108268e-06, "epoch": 0.5923894412067192, "percentage": 59.34, "elapsed_time": "2:15:30", "remaining_time": "1:32:50"}
109
+ {"current_steps": 109, "total_steps": 182, "loss": 0.7067, "accuracy": 0.4921875, "lr": 4.184532225290687e-06, "epoch": 0.5978745286253, "percentage": 59.89, "elapsed_time": "2:16:45", "remaining_time": "1:31:35"}
110
+ {"current_steps": 110, "total_steps": 182, "loss": 0.6908, "accuracy": 0.515625, "lr": 4.089612002487428e-06, "epoch": 0.6033596160438807, "percentage": 60.44, "elapsed_time": "2:18:00", "remaining_time": "1:30:19"}
111
+ {"current_steps": 111, "total_steps": 182, "loss": 0.7648, "accuracy": 0.3984375, "lr": 3.995029951660777e-06, "epoch": 0.6088447034624614, "percentage": 60.99, "elapsed_time": "2:19:13", "remaining_time": "1:29:03"}
112
+ {"current_steps": 112, "total_steps": 182, "loss": 0.7087, "accuracy": 0.5078125, "lr": 3.900821206181521e-06, "epoch": 0.6143297908810421, "percentage": 61.54, "elapsed_time": "2:20:27", "remaining_time": "1:27:47"}
113
+ {"current_steps": 113, "total_steps": 182, "loss": 0.7676, "accuracy": 0.390625, "lr": 3.8070207607527587e-06, "epoch": 0.6198148782996229, "percentage": 62.09, "elapsed_time": "2:21:38", "remaining_time": "1:26:29"}
114
+ {"current_steps": 114, "total_steps": 182, "loss": 0.6863, "accuracy": 0.453125, "lr": 3.7136634584107787e-06, "epoch": 0.6252999657182037, "percentage": 62.64, "elapsed_time": "2:22:48", "remaining_time": "1:25:11"}
115
+ {"current_steps": 115, "total_steps": 182, "loss": 0.6943, "accuracy": 0.421875, "lr": 3.620783977582305e-06, "epoch": 0.6307850531367843, "percentage": 63.19, "elapsed_time": "2:24:04", "remaining_time": "1:23:56"}
116
+ {"current_steps": 116, "total_steps": 182, "loss": 0.7016, "accuracy": 0.390625, "lr": 3.528416819202881e-06, "epoch": 0.6362701405553651, "percentage": 63.74, "elapsed_time": "2:25:18", "remaining_time": "1:22:40"}
117
+ {"current_steps": 117, "total_steps": 182, "loss": 0.7539, "accuracy": 0.4140625, "lr": 3.43659629390117e-06, "epoch": 0.6417552279739458, "percentage": 64.29, "elapsed_time": "2:26:33", "remaining_time": "1:21:25"}
118
+ {"current_steps": 118, "total_steps": 182, "loss": 0.694, "accuracy": 0.4296875, "lr": 3.3453565092539586e-06, "epoch": 0.6472403153925266, "percentage": 64.84, "elapsed_time": "2:27:50", "remaining_time": "1:20:11"}
119
+ {"current_steps": 119, "total_steps": 182, "loss": 0.6878, "accuracy": 0.4375, "lr": 3.254731357116597e-06, "epoch": 0.6527254028111072, "percentage": 65.38, "elapsed_time": "2:29:09", "remaining_time": "1:18:57"}
120
+ {"current_steps": 120, "total_steps": 182, "loss": 0.614, "accuracy": 0.5, "lr": 3.16475450103354e-06, "epoch": 0.658210490229688, "percentage": 65.93, "elapsed_time": "2:30:23", "remaining_time": "1:17:42"}
121
+ {"current_steps": 121, "total_steps": 182, "loss": 0.6938, "accuracy": 0.3828125, "lr": 3.0754593637337276e-06, "epoch": 0.6636955776482688, "percentage": 66.48, "elapsed_time": "2:31:35", "remaining_time": "1:16:25"}
122
+ {"current_steps": 122, "total_steps": 182, "loss": 0.6794, "accuracy": 0.453125, "lr": 2.986879114715403e-06, "epoch": 0.6691806650668495, "percentage": 67.03, "elapsed_time": "2:32:47", "remaining_time": "1:15:08"}
123
+ {"current_steps": 123, "total_steps": 182, "loss": 0.6844, "accuracy": 0.4375, "lr": 2.899046657924992e-06, "epoch": 0.6746657524854303, "percentage": 67.58, "elapsed_time": "2:34:04", "remaining_time": "1:13:54"}
124
+ {"current_steps": 124, "total_steps": 182, "loss": 0.6998, "accuracy": 0.515625, "lr": 2.8119946195346375e-06, "epoch": 0.6801508399040109, "percentage": 68.13, "elapsed_time": "2:35:20", "remaining_time": "1:12:39"}
125
+ {"current_steps": 125, "total_steps": 182, "loss": 0.7058, "accuracy": 0.484375, "lr": 2.725755335822903e-06, "epoch": 0.6856359273225917, "percentage": 68.68, "elapsed_time": "2:36:37", "remaining_time": "1:11:25"}
126
+ {"current_steps": 126, "total_steps": 182, "loss": 0.735, "accuracy": 0.3671875, "lr": 2.6403608411631744e-06, "epoch": 0.6911210147411725, "percentage": 69.23, "elapsed_time": "2:37:50", "remaining_time": "1:10:09"}
127
+ {"current_steps": 127, "total_steps": 182, "loss": 0.678, "accuracy": 0.5, "lr": 2.555842856124182e-06, "epoch": 0.6966061021597532, "percentage": 69.78, "elapsed_time": "2:39:04", "remaining_time": "1:08:53"}
128
+ {"current_steps": 128, "total_steps": 182, "loss": 0.6958, "accuracy": 0.4375, "lr": 2.472232775687119e-06, "epoch": 0.7020911895783339, "percentage": 70.33, "elapsed_time": "2:40:23", "remaining_time": "1:07:39"}
129
+ {"current_steps": 129, "total_steps": 182, "loss": 0.7323, "accuracy": 0.3828125, "lr": 2.389561657583681e-06, "epoch": 0.7075762769969146, "percentage": 70.88, "elapsed_time": "2:41:40", "remaining_time": "1:06:25"}
130
+ {"current_steps": 130, "total_steps": 182, "loss": 0.7064, "accuracy": 0.4453125, "lr": 2.30786021075939e-06, "epoch": 0.7130613644154954, "percentage": 71.43, "elapsed_time": "2:42:53", "remaining_time": "1:05:09"}
131
+ {"current_steps": 131, "total_steps": 182, "loss": 0.7054, "accuracy": 0.453125, "lr": 2.2271587839664673e-06, "epoch": 0.7185464518340761, "percentage": 71.98, "elapsed_time": "2:44:10", "remaining_time": "1:03:54"}
132
+ {"current_steps": 132, "total_steps": 182, "loss": 0.7147, "accuracy": 0.4765625, "lr": 2.1474873544905204e-06, "epoch": 0.7240315392526568, "percentage": 72.53, "elapsed_time": "2:45:24", "remaining_time": "1:02:39"}
133
+ {"current_steps": 133, "total_steps": 182, "loss": 0.6755, "accuracy": 0.453125, "lr": 2.0688755170152e-06, "epoch": 0.7295166266712376, "percentage": 73.08, "elapsed_time": "2:46:35", "remaining_time": "1:01:22"}
134
+ {"current_steps": 134, "total_steps": 182, "loss": 0.6632, "accuracy": 0.484375, "lr": 1.9913524726289784e-06, "epoch": 0.7350017140898183, "percentage": 73.63, "elapsed_time": "2:47:46", "remaining_time": "1:00:06"}
135
+ {"current_steps": 135, "total_steps": 182, "loss": 0.6827, "accuracy": 0.453125, "lr": 1.914947017978153e-06, "epoch": 0.7404868015083991, "percentage": 74.18, "elapsed_time": "2:49:03", "remaining_time": "0:58:51"}
136
+ {"current_steps": 136, "total_steps": 182, "loss": 0.7068, "accuracy": 0.453125, "lr": 1.8396875345700498e-06, "epoch": 0.7459718889269797, "percentage": 74.73, "elapsed_time": "2:50:19", "remaining_time": "0:57:36"}
137
+ {"current_steps": 137, "total_steps": 182, "loss": 0.675, "accuracy": 0.4375, "lr": 1.7656019782304602e-06, "epoch": 0.7514569763455605, "percentage": 75.27, "elapsed_time": "2:51:33", "remaining_time": "0:56:21"}
138
+ {"current_steps": 138, "total_steps": 182, "loss": 0.6753, "accuracy": 0.4140625, "lr": 1.6927178687191953e-06, "epoch": 0.7569420637641412, "percentage": 75.82, "elapsed_time": "2:52:44", "remaining_time": "0:55:04"}
139
+ {"current_steps": 139, "total_steps": 182, "loss": 0.6671, "accuracy": 0.4921875, "lr": 1.621062279507617e-06, "epoch": 0.762427151182722, "percentage": 76.37, "elapsed_time": "2:53:57", "remaining_time": "0:53:48"}
140
+ {"current_steps": 140, "total_steps": 182, "loss": 0.6734, "accuracy": 0.484375, "lr": 1.550661827721941e-06, "epoch": 0.7679122386013028, "percentage": 76.92, "elapsed_time": "2:55:13", "remaining_time": "0:52:34"}
141
+ {"current_steps": 141, "total_steps": 182, "loss": 0.6475, "accuracy": 0.46875, "lr": 1.4815426642560753e-06, "epoch": 0.7733973260198834, "percentage": 77.47, "elapsed_time": "2:56:29", "remaining_time": "0:51:19"}
142
+ {"current_steps": 142, "total_steps": 182, "loss": 0.704, "accuracy": 0.4453125, "lr": 1.4137304640576161e-06, "epoch": 0.7788824134384642, "percentage": 78.02, "elapsed_time": "2:57:42", "remaining_time": "0:50:03"}
143
+ {"current_steps": 143, "total_steps": 182, "loss": 0.6721, "accuracy": 0.40625, "lr": 1.3472504165906614e-06, "epoch": 0.7843675008570449, "percentage": 78.57, "elapsed_time": "2:58:58", "remaining_time": "0:48:48"}
144
+ {"current_steps": 144, "total_steps": 182, "loss": 0.6788, "accuracy": 0.453125, "lr": 1.2821272164789544e-06, "epoch": 0.7898525882756257, "percentage": 79.12, "elapsed_time": "3:00:11", "remaining_time": "0:47:32"}
145
+ {"current_steps": 145, "total_steps": 182, "loss": 0.6739, "accuracy": 0.46875, "lr": 1.2183850543328313e-06, "epoch": 0.7953376756942063, "percentage": 79.67, "elapsed_time": "3:01:24", "remaining_time": "0:46:17"}
146
+ {"current_steps": 146, "total_steps": 182, "loss": 0.7249, "accuracy": 0.4140625, "lr": 1.156047607763407e-06, "epoch": 0.8008227631127871, "percentage": 80.22, "elapsed_time": "3:02:41", "remaining_time": "0:45:02"}
147
+ {"current_steps": 147, "total_steps": 182, "loss": 0.6703, "accuracy": 0.4453125, "lr": 1.095138032587298e-06, "epoch": 0.8063078505313679, "percentage": 80.77, "elapsed_time": "3:03:56", "remaining_time": "0:43:47"}
148
+ {"current_steps": 148, "total_steps": 182, "loss": 0.6999, "accuracy": 0.515625, "lr": 1.0356789542251939e-06, "epoch": 0.8117929379499486, "percentage": 81.32, "elapsed_time": "3:05:13", "remaining_time": "0:42:33"}
149
+ {"current_steps": 149, "total_steps": 182, "loss": 0.7172, "accuracy": 0.40625, "lr": 9.776924592974257e-07, "epoch": 0.8172780253685293, "percentage": 81.87, "elapsed_time": "3:06:28", "remaining_time": "0:41:17"}
150
+ {"current_steps": 150, "total_steps": 182, "loss": 0.6697, "accuracy": 0.5078125, "lr": 9.212000874196953e-07, "epoch": 0.82276311278711, "percentage": 82.42, "elapsed_time": "3:07:45", "remaining_time": "0:40:03"}
151
+ {"current_steps": 151, "total_steps": 182, "loss": 0.7277, "accuracy": 0.3984375, "lr": 8.662228232019876e-07, "epoch": 0.8282482002056908, "percentage": 82.97, "elapsed_time": "3:09:07", "remaining_time": "0:38:49"}
152
+ {"current_steps": 152, "total_steps": 182, "loss": 0.7088, "accuracy": 0.421875, "lr": 8.127810884536402e-07, "epoch": 0.8337332876242715, "percentage": 83.52, "elapsed_time": "3:10:21", "remaining_time": "0:37:34"}
153
+ {"current_steps": 153, "total_steps": 182, "loss": 0.6995, "accuracy": 0.3671875, "lr": 7.60894734597476e-07, "epoch": 0.8392183750428522, "percentage": 84.07, "elapsed_time": "3:11:36", "remaining_time": "0:36:19"}
154
+ {"current_steps": 154, "total_steps": 182, "loss": 0.7351, "accuracy": 0.4375, "lr": 7.105830352958143e-07, "epoch": 0.844703462461433, "percentage": 84.62, "elapsed_time": "3:12:51", "remaining_time": "0:35:03"}
155
+ {"current_steps": 155, "total_steps": 182, "loss": 0.6505, "accuracy": 0.5234375, "lr": 6.618646792910893e-07, "epoch": 0.8501885498800137, "percentage": 85.16, "elapsed_time": "3:14:04", "remaining_time": "0:33:48"}
156
+ {"current_steps": 156, "total_steps": 182, "loss": 0.6828, "accuracy": 0.4296875, "lr": 6.147577634637413e-07, "epoch": 0.8556736372985945, "percentage": 85.71, "elapsed_time": "3:15:18", "remaining_time": "0:32:33"}
157
+ {"current_steps": 157, "total_steps": 182, "loss": 0.6692, "accuracy": 0.4453125, "lr": 5.692797861099719e-07, "epoch": 0.8611587247171751, "percentage": 86.26, "elapsed_time": "3:16:35", "remaining_time": "0:31:18"}
158
+ {"current_steps": 158, "total_steps": 182, "loss": 0.6559, "accuracy": 0.4921875, "lr": 5.254476404418341e-07, "epoch": 0.8666438121357559, "percentage": 86.81, "elapsed_time": "3:17:46", "remaining_time": "0:30:02"}
159
+ {"current_steps": 159, "total_steps": 182, "loss": 0.6729, "accuracy": 0.484375, "lr": 4.832776083120983e-07, "epoch": 0.8721288995543367, "percentage": 87.36, "elapsed_time": "3:19:00", "remaining_time": "0:28:47"}
160
+ {"current_steps": 160, "total_steps": 182, "loss": 0.6734, "accuracy": 0.4296875, "lr": 4.4278535416620914e-07, "epoch": 0.8776139869729174, "percentage": 87.91, "elapsed_time": "3:20:11", "remaining_time": "0:27:31"}
161
+ {"current_steps": 161, "total_steps": 182, "loss": 0.6609, "accuracy": 0.484375, "lr": 4.0398591922357787e-07, "epoch": 0.8830990743914982, "percentage": 88.46, "elapsed_time": "3:21:24", "remaining_time": "0:26:16"}
162
+ {"current_steps": 162, "total_steps": 182, "loss": 0.7074, "accuracy": 0.46875, "lr": 3.6689371589039013e-07, "epoch": 0.8885841618100788, "percentage": 89.01, "elapsed_time": "3:22:35", "remaining_time": "0:25:00"}
163
+ {"current_steps": 163, "total_steps": 182, "loss": 0.7038, "accuracy": 0.453125, "lr": 3.315225224059809e-07, "epoch": 0.8940692492286596, "percentage": 89.56, "elapsed_time": "3:23:48", "remaining_time": "0:23:45"}
164
+ {"current_steps": 164, "total_steps": 182, "loss": 0.7124, "accuracy": 0.4375, "lr": 2.9788547772478416e-07, "epoch": 0.8995543366472403, "percentage": 90.11, "elapsed_time": "3:25:00", "remaining_time": "0:22:30"}
165
+ {"current_steps": 165, "total_steps": 182, "loss": 0.7082, "accuracy": 0.4453125, "lr": 2.6599507663574387e-07, "epoch": 0.905039424065821, "percentage": 90.66, "elapsed_time": "3:26:13", "remaining_time": "0:21:14"}
166
+ {"current_steps": 166, "total_steps": 182, "loss": 0.6543, "accuracy": 0.5, "lr": 2.3586316512101416e-07, "epoch": 0.9105245114844018, "percentage": 91.21, "elapsed_time": "3:27:30", "remaining_time": "0:20:00"}
167
+ {"current_steps": 167, "total_steps": 182, "loss": 0.681, "accuracy": 0.46875, "lr": 2.0750093595565735e-07, "epoch": 0.9160095989029825, "percentage": 91.76, "elapsed_time": "3:28:44", "remaining_time": "0:18:44"}
168
+ {"current_steps": 168, "total_steps": 182, "loss": 0.7125, "accuracy": 0.4140625, "lr": 1.8091892454998595e-07, "epoch": 0.9214946863215633, "percentage": 92.31, "elapsed_time": "3:30:01", "remaining_time": "0:17:30"}
169
+ {"current_steps": 169, "total_steps": 182, "loss": 0.7055, "accuracy": 0.5078125, "lr": 1.561270050360897e-07, "epoch": 0.926979773740144, "percentage": 92.86, "elapsed_time": "3:31:15", "remaining_time": "0:16:15"}
170
+ {"current_steps": 170, "total_steps": 182, "loss": 0.7325, "accuracy": 0.3984375, "lr": 1.33134386599994e-07, "epoch": 0.9324648611587247, "percentage": 93.41, "elapsed_time": "3:32:31", "remaining_time": "0:15:00"}
171
+ {"current_steps": 171, "total_steps": 182, "loss": 0.7225, "accuracy": 0.453125, "lr": 1.1194961006082972e-07, "epoch": 0.9379499485773054, "percentage": 93.96, "elapsed_time": "3:33:47", "remaining_time": "0:13:45"}
172
+ {"current_steps": 172, "total_steps": 182, "loss": 0.6933, "accuracy": 0.4296875, "lr": 9.258054469825972e-08, "epoch": 0.9434350359958862, "percentage": 94.51, "elapsed_time": "3:34:57", "remaining_time": "0:12:29"}
173
+ {"current_steps": 173, "total_steps": 182, "loss": 0.7091, "accuracy": 0.3984375, "lr": 7.503438532937169e-08, "epoch": 0.948920123414467, "percentage": 95.05, "elapsed_time": "3:36:09", "remaining_time": "0:11:14"}
174
+ {"current_steps": 174, "total_steps": 182, "loss": 0.7149, "accuracy": 0.4765625, "lr": 5.9317649636088656e-08, "epoch": 0.9544052108330476, "percentage": 95.6, "elapsed_time": "3:37:26", "remaining_time": "0:09:59"}
175
+ {"current_steps": 175, "total_steps": 182, "loss": 0.7722, "accuracy": 0.40625, "lr": 4.543617574412185e-08, "epoch": 0.9598902982516284, "percentage": 96.15, "elapsed_time": "3:38:42", "remaining_time": "0:08:44"}
176
+ {"current_steps": 176, "total_steps": 182, "loss": 0.6728, "accuracy": 0.484375, "lr": 3.339512005434309e-08, "epoch": 0.9653753856702091, "percentage": 96.7, "elapsed_time": "3:39:57", "remaining_time": "0:07:29"}
177
+ {"current_steps": 177, "total_steps": 182, "loss": 0.7326, "accuracy": 0.4296875, "lr": 2.319895532739369e-08, "epoch": 0.9708604730887899, "percentage": 97.25, "elapsed_time": "3:41:14", "remaining_time": "0:06:14"}
178
+ {"current_steps": 178, "total_steps": 182, "loss": 0.6743, "accuracy": 0.421875, "lr": 1.4851469022234e-08, "epoch": 0.9763455605073705, "percentage": 97.8, "elapsed_time": "3:42:26", "remaining_time": "0:04:59"}
179
+ {"current_steps": 179, "total_steps": 182, "loss": 0.6574, "accuracy": 0.4375, "lr": 8.35576188926046e-09, "epoch": 0.9818306479259513, "percentage": 98.35, "elapsed_time": "3:43:45", "remaining_time": "0:03:45"}
180
+ {"current_steps": 180, "total_steps": 182, "loss": 0.6931, "accuracy": 0.4453125, "lr": 3.71424681850141e-09, "epoch": 0.9873157353445321, "percentage": 98.9, "elapsed_time": "3:45:04", "remaining_time": "0:02:30"}
181
+ {"current_steps": 181, "total_steps": 182, "loss": 0.6412, "accuracy": 0.546875, "lr": 9.286479433257e-10, "epoch": 0.9928008227631128, "percentage": 99.45, "elapsed_time": "3:46:20", "remaining_time": "0:01:15"}
182
+ {"current_steps": 182, "total_steps": 182, "loss": 0.6649, "accuracy": 0.515625, "lr": 0.0, "epoch": 0.9982859101816935, "percentage": 100.0, "elapsed_time": "3:47:42", "remaining_time": "0:00:00"}
183
+ {"current_steps": 182, "total_steps": 182, "epoch": 0.9982859101816935, "percentage": 100.0, "elapsed_time": "3:48:19", "remaining_time": "0:00:00"}
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f8dfa53c711ce0c65ab65ffb3ddd32b3e5d09d1813d27f583231028b7c7745b
3
+ size 7288
training_loss.png ADDED
training_rewards_accuracies.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff