|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
language: |
|
- en |
|
widget: |
|
- text: I love AutoTrain 🤗 |
|
datasets: |
|
- librarian-bots/model_card_dataset_mentions |
|
co2_eq_emissions: |
|
emissions: 0.12753465619151655 |
|
license: mit |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- recall |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 3522695252 |
|
- CO2 Emissions (in grams): 0.1275 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.000 |
|
- Accuracy: 1.000 |
|
- Precision: 1.000 |
|
- Recall: 1.000 |
|
- AUC: 1.000 |
|
- F1: 1.000 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-dataset-mentions-160223-3522695252 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |