sofiaoliveira commited on
Commit
74a61aa
1 Parent(s): fa916ec

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - pt
5
+ - en
6
+ tags:
7
+ - bert-base-multilingual-cased
8
+ - semantic role labeling
9
+ - finetuned
10
+ license: Apache 2.0
11
+ datasets:
12
+ - PropBank.Br
13
+ - CoNLL-2012
14
+ metrics:
15
+ - F1 Measure
16
+ ---
17
+
18
+ # mBERT fine-tuned on English semantic role labeling
19
+
20
+ ## Model description
21
+
22
+ This model is the [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) fine-tuned on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data. This is part of a project from which resulted the following models:
23
+
24
+ * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base)
25
+ * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large)
26
+ * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base)
27
+ * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large)
28
+ * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base)
29
+ * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base)
30
+ * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large)
31
+ * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base)
32
+ * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base)
33
+ * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large)
34
+ * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base)
35
+ * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large)
36
+ * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large)
37
+ * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large)
38
+
39
+ For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt).
40
+
41
+
42
+ ## Intended uses & limitations
43
+
44
+ #### How to use
45
+
46
+ To use the transformers portion of this model:
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModel
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained("liaad/srl-en_mbert-base")
51
+ model = AutoModel.from_pretrained("liaad/srl-en_mbert-base")
52
+ ```
53
+
54
+ To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt).
55
+
56
+
57
+ #### Limitations and bias
58
+
59
+ - The models were trained only for 5 epochs.
60
+ - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data.
61
+
62
+
63
+ ## Training data
64
+
65
+ Pretrained weights were left identical to the original model [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased).
66
+
67
+
68
+ ## Training procedure
69
+
70
+ The models were trained on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data. They were tested on the PropBank.Br data set as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt).
71
+
72
+ ## Eval results
73
+
74
+
75
+ | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) |
76
+ | --------------- | ------ | ----- |
77
+ | `srl-pt_bertimbau-base` | 76.30 | 73.33 |
78
+ | `srl-pt_bertimbau-large` | 77.42 | 74.85 |
79
+ | `srl-pt_xlmr-base` | 75.22 | 72.82 |
80
+ | `srl-pt_xlmr-large` | 77.59 | 73.84 |
81
+ | `srl-pt_mbert-base` | 72.76 | 66.89 |
82
+ | `srl-en_xlmr-base` | 66.59 | 65.24 |
83
+ | `srl-en_xlmr-large` | 67.60 | 64.94 |
84
+ | `srl-en_mbert-base` | 63.07 | 58.56 |
85
+ | `srl-enpt_xlmr-base` | 76.50 | 73.74 |
86
+ | `srl-enpt_xlmr-large` | **78.22** | 74.55 |
87
+ | `srl-enpt_mbert-base` | 74.88 | 69.19 |
88
+ | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 |
89
+ | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 |
90
+ | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** |
91
+
92
+
93
+ ### BibTeX entry and citation info
94
+
95
+ ```bibtex
96
+ @misc{oliveira2021transformers,
97
+ title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling},
98
+ author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge},
99
+ year={2021},
100
+ eprint={2101.01213},
101
+ archivePrefix={arXiv},
102
+ primaryClass={cs.CL}
103
+ }
104
+ ```