librarian-bot's picture
Librarian Bot: Add base_model information to model
02e3be0
|
raw
history blame
2.73 kB
metadata
language:
  - pt
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-tiny
model-index:
  - name: Whisper Tiny PT with Common Voice 11
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: pt, split: test'
        metrics:
          - type: wer
            value: 33.24473522796974
            name: Wer

Whisper Tiny PT with Common Voice 11

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5205
  • Wer: 33.2447

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 16000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3154 0.44 1000 0.4987 36.2196
0.3252 0.88 2000 0.4586 33.6213
0.1989 1.32 3000 0.4457 32.7455
0.3112 1.76 4000 0.4356 31.4097
0.1329 2.2 5000 0.4348 31.1559
0.1193 2.64 6000 0.4343 31.4046
0.0723 3.07 7000 0.4424 31.5869
0.0698 3.51 8000 0.4497 32.0827
0.0865 3.95 9000 0.4497 31.0945
0.0522 4.39 10000 0.4716 32.2190
0.0542 4.83 11000 0.4761 32.6944
0.061 5.27 12000 0.4983 32.0691
0.0459 5.71 13000 0.4985 32.4968
0.0338 6.15 14000 0.5123 33.3129
0.0492 6.59 15000 0.5217 33.2686
0.0194 7.03 16000 0.5205 33.2447

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1