End of training
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- clinc_oos
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: roberta-large-finetuned-clinc
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: clinc_oos
|
17 |
+
type: clinc_oos
|
18 |
+
args: plus
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.9767741935483871
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# roberta-large-finetuned-clinc
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.1545
|
33 |
+
- Accuracy: 0.9768
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 2e-05
|
53 |
+
- train_batch_size: 16
|
54 |
+
- eval_batch_size: 16
|
55 |
+
- seed: 42
|
56 |
+
- distributed_type: sagemaker_data_parallel
|
57 |
+
- num_devices: 8
|
58 |
+
- total_train_batch_size: 128
|
59 |
+
- total_eval_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 500
|
63 |
+
- num_epochs: 5
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 5.0548 | 1.0 | 120 | 5.0359 | 0.0071 |
|
71 |
+
| 4.4725 | 2.0 | 240 | 2.9385 | 0.7558 |
|
72 |
+
| 1.8924 | 3.0 | 360 | 0.6456 | 0.9374 |
|
73 |
+
| 0.4552 | 4.0 | 480 | 0.2297 | 0.9626 |
|
74 |
+
| 0.1589 | 5.0 | 600 | 0.1545 | 0.9768 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.17.0
|
80 |
+
- Pytorch 1.10.2+cu113
|
81 |
+
- Datasets 1.18.4
|
82 |
+
- Tokenizers 0.11.6
|
eval_results.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch = 5.0
|
2 |
+
eval_accuracy = 0.9767741935483871
|
3 |
+
eval_loss = 0.15451878309249878
|
4 |
+
eval_runtime = 2.6267
|
5 |
+
eval_samples_per_second = 1180.186
|
6 |
+
eval_steps_per_second = 9.518
|
logs/events.out.tfevents.1649839227.algo-1.599.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89b9ee7cc6c28999508bf1026b6dafff5d95b809aa16d7fee46521f96a71d1aa
|
3 |
+
size 13946
|
logs/events.out.tfevents.1649839515.algo-1.599.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4e5e033dc51e9efd8780deafbd47a5add0c061cfbb57932d60d61dbe8f02104
|
3 |
+
size 363
|