metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: finetuned-marktextepoch-n200
results: []
finetuned-marktextepoch-n200
This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0880
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5742 | 1.0 | 1606 | 2.4071 |
2.4441 | 2.0 | 3212 | 2.2715 |
2.3699 | 3.0 | 4818 | 2.2896 |
2.3074 | 4.0 | 6424 | 2.2295 |
2.2667 | 5.0 | 8030 | 2.2147 |
2.2376 | 6.0 | 9636 | 2.1886 |
2.2161 | 7.0 | 11242 | 2.1816 |
2.1611 | 8.0 | 12848 | 2.1690 |
2.1418 | 9.0 | 14454 | 2.1541 |
2.1198 | 10.0 | 16060 | 2.1355 |
2.1033 | 11.0 | 17666 | 2.1132 |
2.0738 | 12.0 | 19272 | 2.1441 |
2.0581 | 13.0 | 20878 | 2.1068 |
2.0555 | 14.0 | 22484 | 2.1035 |
2.0375 | 15.0 | 24090 | 2.1000 |
2.0071 | 16.0 | 25696 | 2.1084 |
1.9942 | 17.0 | 27302 | 2.0711 |
1.9554 | 18.0 | 28908 | 2.0978 |
1.9469 | 19.0 | 30514 | 2.0705 |
1.9414 | 20.0 | 32120 | 2.0597 |
1.9331 | 21.0 | 33726 | 2.0782 |
1.9132 | 22.0 | 35332 | 2.0622 |
1.9003 | 23.0 | 36938 | 2.0426 |
1.9019 | 24.0 | 38544 | 2.0562 |
1.8733 | 25.0 | 40150 | 2.0419 |
1.8556 | 26.0 | 41756 | 2.0572 |
1.8399 | 27.0 | 43362 | 2.0453 |
1.8332 | 28.0 | 44968 | 2.0517 |
1.8296 | 29.0 | 46574 | 2.0580 |
1.788 | 30.0 | 48180 | 2.0454 |
1.7944 | 31.0 | 49786 | 2.0193 |
1.7716 | 32.0 | 51392 | 2.0595 |
1.7799 | 33.0 | 52998 | 2.0379 |
1.7633 | 34.0 | 54604 | 2.0392 |
1.7477 | 35.0 | 56210 | 2.0122 |
1.7407 | 36.0 | 57816 | 2.0293 |
1.7163 | 37.0 | 59422 | 2.0339 |
1.72 | 38.0 | 61028 | 1.9987 |
1.729 | 39.0 | 62634 | 2.0135 |
1.709 | 40.0 | 64240 | 2.0455 |
1.7019 | 41.0 | 65846 | 2.0206 |
1.6958 | 42.0 | 67452 | 2.0408 |
1.6789 | 43.0 | 69058 | 2.0470 |
1.6907 | 44.0 | 70664 | 2.0280 |
1.6531 | 45.0 | 72270 | 2.0514 |
1.6563 | 46.0 | 73876 | 2.0428 |
1.6364 | 47.0 | 75482 | 2.0305 |
1.6534 | 48.0 | 77088 | 2.0200 |
1.6312 | 49.0 | 78694 | 2.0444 |
1.6092 | 50.0 | 80300 | 2.0154 |
1.5998 | 51.0 | 81906 | 2.0249 |
1.5808 | 52.0 | 83512 | 2.0235 |
1.5945 | 53.0 | 85118 | 2.0286 |
1.6004 | 54.0 | 86724 | 2.0288 |
1.5802 | 55.0 | 88330 | 2.0346 |
1.5665 | 56.0 | 89936 | 2.0120 |
1.5723 | 57.0 | 91542 | 2.0257 |
1.5553 | 58.0 | 93148 | 2.0146 |
1.5445 | 59.0 | 94754 | 2.0333 |
1.5669 | 60.0 | 96360 | 2.0325 |
1.5318 | 61.0 | 97966 | 2.0250 |
1.5117 | 62.0 | 99572 | 2.0343 |
1.5248 | 63.0 | 101178 | 2.0183 |
1.5149 | 64.0 | 102784 | 2.0422 |
1.5087 | 65.0 | 104390 | 2.0236 |
1.5087 | 66.0 | 105996 | 2.0275 |
1.4938 | 67.0 | 107602 | 2.0384 |
1.5008 | 68.0 | 109208 | 2.0167 |
1.4871 | 69.0 | 110814 | 2.0456 |
1.4931 | 70.0 | 112420 | 2.0083 |
1.467 | 71.0 | 114026 | 2.0313 |
1.4519 | 72.0 | 115632 | 2.0254 |
1.448 | 73.0 | 117238 | 2.0289 |
1.4475 | 74.0 | 118844 | 2.0051 |
1.4522 | 75.0 | 120450 | 2.0378 |
1.4508 | 76.0 | 122056 | 2.0612 |
1.4428 | 77.0 | 123662 | 2.0479 |
1.4496 | 78.0 | 125268 | 2.0082 |
1.4305 | 79.0 | 126874 | 2.0376 |
1.4072 | 80.0 | 128480 | 2.0294 |
1.4148 | 81.0 | 130086 | 2.0565 |
1.4078 | 82.0 | 131692 | 2.0309 |
1.3931 | 83.0 | 133298 | 2.0371 |
1.4038 | 84.0 | 134904 | 2.0318 |
1.3893 | 85.0 | 136510 | 2.0413 |
1.3862 | 86.0 | 138116 | 2.0503 |
1.3782 | 87.0 | 139722 | 2.0182 |
1.3757 | 88.0 | 141328 | 2.0253 |
1.3879 | 89.0 | 142934 | 2.0357 |
1.3768 | 90.0 | 144540 | 2.0405 |
1.3494 | 91.0 | 146146 | 2.0495 |
1.3492 | 92.0 | 147752 | 2.0586 |
1.353 | 93.0 | 149358 | 2.0779 |
1.3397 | 94.0 | 150964 | 2.0564 |
1.3486 | 95.0 | 152570 | 2.0459 |
1.3262 | 96.0 | 154176 | 2.0692 |
1.349 | 97.0 | 155782 | 2.0765 |
1.3228 | 98.0 | 157388 | 2.0443 |
1.3291 | 99.0 | 158994 | 2.0617 |
1.3211 | 100.0 | 160600 | 2.0552 |
1.3344 | 101.0 | 162206 | 2.0626 |
1.307 | 102.0 | 163812 | 2.0492 |
1.2968 | 103.0 | 165418 | 2.0461 |
1.2919 | 104.0 | 167024 | 2.0725 |
1.3004 | 105.0 | 168630 | 2.0424 |
1.303 | 106.0 | 170236 | 2.0484 |
1.2847 | 107.0 | 171842 | 2.0083 |
1.2861 | 108.0 | 173448 | 2.0491 |
1.2763 | 109.0 | 175054 | 2.0505 |
1.2852 | 110.0 | 176660 | 2.0691 |
1.2611 | 111.0 | 178266 | 2.0711 |
1.2739 | 112.0 | 179872 | 2.0730 |
1.278 | 113.0 | 181478 | 2.0551 |
1.2581 | 114.0 | 183084 | 2.0554 |
1.2532 | 115.0 | 184690 | 2.0513 |
1.2322 | 116.0 | 186296 | 2.0292 |
1.2774 | 117.0 | 187902 | 2.0409 |
1.242 | 118.0 | 189508 | 2.0517 |
1.2476 | 119.0 | 191114 | 2.0612 |
1.2314 | 120.0 | 192720 | 2.0795 |
1.2379 | 121.0 | 194326 | 2.0679 |
1.2291 | 122.0 | 195932 | 2.0472 |
1.2515 | 123.0 | 197538 | 2.0829 |
1.2467 | 124.0 | 199144 | 2.0662 |
1.2437 | 125.0 | 200750 | 2.0962 |
1.2373 | 126.0 | 202356 | 2.0692 |
1.2099 | 127.0 | 203962 | 2.0688 |
1.1911 | 128.0 | 205568 | 2.0803 |
1.2311 | 129.0 | 207174 | 2.0765 |
1.2095 | 130.0 | 208780 | 2.0697 |
1.2093 | 131.0 | 210386 | 2.0507 |
1.2065 | 132.0 | 211992 | 2.0658 |
1.1964 | 133.0 | 213598 | 2.0542 |
1.2085 | 134.0 | 215204 | 2.0722 |
1.1871 | 135.0 | 216810 | 2.0806 |
1.1863 | 136.0 | 218416 | 2.0691 |
1.1763 | 137.0 | 220022 | 2.0869 |
1.1816 | 138.0 | 221628 | 2.0780 |
1.1854 | 139.0 | 223234 | 2.0462 |
1.1902 | 140.0 | 224840 | 2.0880 |
1.1762 | 141.0 | 226446 | 2.0682 |
1.1551 | 142.0 | 228052 | 2.0837 |
1.171 | 143.0 | 229658 | 2.1028 |
1.1571 | 144.0 | 231264 | 2.0726 |
1.1627 | 145.0 | 232870 | 2.0863 |
1.1537 | 146.0 | 234476 | 2.0857 |
1.1695 | 147.0 | 236082 | 2.0620 |
1.1477 | 148.0 | 237688 | 2.0817 |
1.1592 | 149.0 | 239294 | 2.0705 |
1.1478 | 150.0 | 240900 | 2.0841 |
1.1398 | 151.0 | 242506 | 2.0886 |
1.144 | 152.0 | 244112 | 2.0673 |
1.1646 | 153.0 | 245718 | 2.0620 |
1.12 | 154.0 | 247324 | 2.0821 |
1.1419 | 155.0 | 248930 | 2.0632 |
1.1436 | 156.0 | 250536 | 2.0817 |
1.1365 | 157.0 | 252142 | 2.0663 |
1.1318 | 158.0 | 253748 | 2.0796 |
1.1219 | 159.0 | 255354 | 2.0825 |
1.1306 | 160.0 | 256960 | 2.0837 |
1.1295 | 161.0 | 258566 | 2.0564 |
1.1261 | 162.0 | 260172 | 2.0722 |
1.1273 | 163.0 | 261778 | 2.1058 |
1.1143 | 164.0 | 263384 | 2.0963 |
1.1276 | 165.0 | 264990 | 2.0948 |
1.1238 | 166.0 | 266596 | 2.0695 |
1.1222 | 167.0 | 268202 | 2.0801 |
1.1145 | 168.0 | 269808 | 2.0768 |
1.1093 | 169.0 | 271414 | 2.0664 |
1.1141 | 170.0 | 273020 | 2.0903 |
1.0936 | 171.0 | 274626 | 2.1012 |
1.1048 | 172.0 | 276232 | 2.1033 |
1.0991 | 173.0 | 277838 | 2.0761 |
1.1164 | 174.0 | 279444 | 2.0689 |
1.0935 | 175.0 | 281050 | 2.0754 |
1.1032 | 176.0 | 282656 | 2.0810 |
1.1124 | 177.0 | 284262 | 2.0790 |
1.1107 | 178.0 | 285868 | 2.0762 |
1.085 | 179.0 | 287474 | 2.0697 |
1.093 | 180.0 | 289080 | 2.0856 |
1.1034 | 181.0 | 290686 | 2.0734 |
1.0983 | 182.0 | 292292 | 2.0837 |
1.0972 | 183.0 | 293898 | 2.1063 |
1.0909 | 184.0 | 295504 | 2.0873 |
1.0805 | 185.0 | 297110 | 2.0888 |
1.0893 | 186.0 | 298716 | 2.0498 |
1.096 | 187.0 | 300322 | 2.0906 |
1.0781 | 188.0 | 301928 | 2.0905 |
1.0981 | 189.0 | 303534 | 2.0767 |
1.093 | 190.0 | 305140 | 2.0695 |
1.0814 | 191.0 | 306746 | 2.0763 |
1.0862 | 192.0 | 308352 | 2.0890 |
1.0833 | 193.0 | 309958 | 2.1026 |
1.0806 | 194.0 | 311564 | 2.0978 |
1.0834 | 195.0 | 313170 | 2.1004 |
1.0807 | 196.0 | 314776 | 2.0953 |
1.0827 | 197.0 | 316382 | 2.1129 |
1.0826 | 198.0 | 317988 | 2.1069 |
1.0796 | 199.0 | 319594 | 2.0867 |
1.0881 | 200.0 | 321200 | 2.0880 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1