Update README.md
Browse files
README.md
CHANGED
@@ -50,12 +50,13 @@ This version of the Google T5-Base model has been fine-tuned on a bilingual data
|
|
50 |
`"translate Lezghian to Russian: "` - Lez-Ru
|
51 |
|
52 |
## How to Get Started with the Model
|
|
|
|
|
53 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
54 |
|
55 |
model = AutoModelForSeq2SeqLM.from_pretrained("leks-forever/mt5-base")
|
56 |
tokenizer = AutoTokenizer.from_pretrained("leks-forever/mt5-base")
|
57 |
|
58 |
-
```python
|
59 |
def predict(text, prefix, a=32, b=3, max_input_length=1024, num_beams=1, **kwargs):
|
60 |
inputs = tokenizer(prefix + text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
|
61 |
result = model.generate(
|
|
|
50 |
`"translate Lezghian to Russian: "` - Lez-Ru
|
51 |
|
52 |
## How to Get Started with the Model
|
53 |
+
|
54 |
+
```python
|
55 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
56 |
|
57 |
model = AutoModelForSeq2SeqLM.from_pretrained("leks-forever/mt5-base")
|
58 |
tokenizer = AutoTokenizer.from_pretrained("leks-forever/mt5-base")
|
59 |
|
|
|
60 |
def predict(text, prefix, a=32, b=3, max_input_length=1024, num_beams=1, **kwargs):
|
61 |
inputs = tokenizer(prefix + text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
|
62 |
result = model.generate(
|