legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +155 -0
imatrix.log
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 35 key-value pairs and 288 tensors from gemma-2-2b-it-IMat-GGUF/gemma-2-2b-it.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = gemma2
|
4 |
+
llama_model_loader: - kv 1: general.type str = model
|
5 |
+
llama_model_loader: - kv 2: general.name str = Gemma 2 2b It
|
6 |
+
llama_model_loader: - kv 3: general.finetune str = it
|
7 |
+
llama_model_loader: - kv 4: general.basename str = gemma-2
|
8 |
+
llama_model_loader: - kv 5: general.size_label str = 2B
|
9 |
+
llama_model_loader: - kv 6: general.license str = gemma
|
10 |
+
llama_model_loader: - kv 7: general.tags arr[str,2] = ["conversational", "text-generation"]
|
11 |
+
llama_model_loader: - kv 8: gemma2.context_length u32 = 8192
|
12 |
+
llama_model_loader: - kv 9: gemma2.embedding_length u32 = 2304
|
13 |
+
llama_model_loader: - kv 10: gemma2.block_count u32 = 26
|
14 |
+
llama_model_loader: - kv 11: gemma2.feed_forward_length u32 = 9216
|
15 |
+
llama_model_loader: - kv 12: gemma2.attention.head_count u32 = 8
|
16 |
+
llama_model_loader: - kv 13: gemma2.attention.head_count_kv u32 = 4
|
17 |
+
llama_model_loader: - kv 14: gemma2.attention.layer_norm_rms_epsilon f32 = 0.000001
|
18 |
+
llama_model_loader: - kv 15: gemma2.attention.key_length u32 = 256
|
19 |
+
llama_model_loader: - kv 16: gemma2.attention.value_length u32 = 256
|
20 |
+
llama_model_loader: - kv 17: general.file_type u32 = 7
|
21 |
+
llama_model_loader: - kv 18: gemma2.attn_logit_softcapping f32 = 50.000000
|
22 |
+
llama_model_loader: - kv 19: gemma2.final_logit_softcapping f32 = 30.000000
|
23 |
+
llama_model_loader: - kv 20: gemma2.attention.sliding_window u32 = 4096
|
24 |
+
llama_model_loader: - kv 21: tokenizer.ggml.model str = llama
|
25 |
+
llama_model_loader: - kv 22: tokenizer.ggml.pre str = default
|
26 |
+
llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,256000] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
|
27 |
+
llama_model_loader: - kv 24: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
|
28 |
+
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
|
29 |
+
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 2
|
30 |
+
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 1
|
31 |
+
llama_model_loader: - kv 28: tokenizer.ggml.unknown_token_id u32 = 3
|
32 |
+
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 0
|
33 |
+
llama_model_loader: - kv 30: tokenizer.ggml.add_bos_token bool = true
|
34 |
+
llama_model_loader: - kv 31: tokenizer.ggml.add_eos_token bool = false
|
35 |
+
llama_model_loader: - kv 32: tokenizer.chat_template str = {{ bos_token }}{% if messages[0]['rol...
|
36 |
+
llama_model_loader: - kv 33: tokenizer.ggml.add_space_prefix bool = false
|
37 |
+
llama_model_loader: - kv 34: general.quantization_version u32 = 2
|
38 |
+
llama_model_loader: - type f32: 105 tensors
|
39 |
+
llama_model_loader: - type q8_0: 183 tensors
|
40 |
+
llm_load_vocab: special tokens cache size = 249
|
41 |
+
llm_load_vocab: token to piece cache size = 1.6014 MB
|
42 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
43 |
+
llm_load_print_meta: arch = gemma2
|
44 |
+
llm_load_print_meta: vocab type = SPM
|
45 |
+
llm_load_print_meta: n_vocab = 256000
|
46 |
+
llm_load_print_meta: n_merges = 0
|
47 |
+
llm_load_print_meta: vocab_only = 0
|
48 |
+
llm_load_print_meta: n_ctx_train = 8192
|
49 |
+
llm_load_print_meta: n_embd = 2304
|
50 |
+
llm_load_print_meta: n_layer = 26
|
51 |
+
llm_load_print_meta: n_head = 8
|
52 |
+
llm_load_print_meta: n_head_kv = 4
|
53 |
+
llm_load_print_meta: n_rot = 256
|
54 |
+
llm_load_print_meta: n_swa = 4096
|
55 |
+
llm_load_print_meta: n_embd_head_k = 256
|
56 |
+
llm_load_print_meta: n_embd_head_v = 256
|
57 |
+
llm_load_print_meta: n_gqa = 2
|
58 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
59 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
60 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
61 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
62 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
63 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
64 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
65 |
+
llm_load_print_meta: n_ff = 9216
|
66 |
+
llm_load_print_meta: n_expert = 0
|
67 |
+
llm_load_print_meta: n_expert_used = 0
|
68 |
+
llm_load_print_meta: causal attn = 1
|
69 |
+
llm_load_print_meta: pooling type = 0
|
70 |
+
llm_load_print_meta: rope type = 2
|
71 |
+
llm_load_print_meta: rope scaling = linear
|
72 |
+
llm_load_print_meta: freq_base_train = 10000.0
|
73 |
+
llm_load_print_meta: freq_scale_train = 1
|
74 |
+
llm_load_print_meta: n_ctx_orig_yarn = 8192
|
75 |
+
llm_load_print_meta: rope_finetuned = unknown
|
76 |
+
llm_load_print_meta: ssm_d_conv = 0
|
77 |
+
llm_load_print_meta: ssm_d_inner = 0
|
78 |
+
llm_load_print_meta: ssm_d_state = 0
|
79 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
80 |
+
llm_load_print_meta: model type = 2B
|
81 |
+
llm_load_print_meta: model ftype = Q8_0
|
82 |
+
llm_load_print_meta: model params = 2.61 B
|
83 |
+
llm_load_print_meta: model size = 2.59 GiB (8.50 BPW)
|
84 |
+
llm_load_print_meta: general.name = Gemma 2 2b It
|
85 |
+
llm_load_print_meta: BOS token = 2 '<bos>'
|
86 |
+
llm_load_print_meta: EOS token = 1 '<eos>'
|
87 |
+
llm_load_print_meta: UNK token = 3 '<unk>'
|
88 |
+
llm_load_print_meta: PAD token = 0 '<pad>'
|
89 |
+
llm_load_print_meta: LF token = 227 '<0x0A>'
|
90 |
+
llm_load_print_meta: EOT token = 107 '<end_of_turn>'
|
91 |
+
llm_load_print_meta: max token length = 48
|
92 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
93 |
+
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
94 |
+
ggml_cuda_init: found 1 CUDA devices:
|
95 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
96 |
+
llm_load_tensors: ggml ctx size = 0.26 MiB
|
97 |
+
llm_load_tensors: offloading 26 repeating layers to GPU
|
98 |
+
llm_load_tensors: offloading non-repeating layers to GPU
|
99 |
+
llm_load_tensors: offloaded 27/27 layers to GPU
|
100 |
+
llm_load_tensors: CPU buffer size = 597.66 MiB
|
101 |
+
llm_load_tensors: CUDA0 buffer size = 2649.78 MiB
|
102 |
+
..................................................................
|
103 |
+
llama_new_context_with_model: n_ctx = 512
|
104 |
+
llama_new_context_with_model: n_batch = 512
|
105 |
+
llama_new_context_with_model: n_ubatch = 512
|
106 |
+
llama_new_context_with_model: flash_attn = 0
|
107 |
+
llama_new_context_with_model: freq_base = 10000.0
|
108 |
+
llama_new_context_with_model: freq_scale = 1
|
109 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 52.00 MiB
|
110 |
+
llama_new_context_with_model: KV self size = 52.00 MiB, K (f16): 26.00 MiB, V (f16): 26.00 MiB
|
111 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
|
112 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 504.50 MiB
|
113 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 6.51 MiB
|
114 |
+
llama_new_context_with_model: graph nodes = 1050
|
115 |
+
llama_new_context_with_model: graph splits = 2
|
116 |
+
|
117 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
118 |
+
compute_imatrix: tokenizing the input ..
|
119 |
+
compute_imatrix: tokenization took 121.079 ms
|
120 |
+
compute_imatrix: computing over 128 chunks with batch_size 512
|
121 |
+
compute_imatrix: 0.44 seconds per pass - ETA 0.93 minutes
|
122 |
+
[1]8.7747,[2]5.9624,[3]5.6926,[4]7.1903,[5]7.4523,[6]6.4662,[7]7.2543,[8]7.6677,[9]7.8766,
|
123 |
+
save_imatrix: stored collected data after 10 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
124 |
+
[10]6.9248,[11]7.0146,[12]7.6306,[13]8.2486,[14]8.4140,[15]8.9828,[16]9.3205,[17]9.4306,[18]9.8774,[19]9.4496,
|
125 |
+
save_imatrix: stored collected data after 20 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
126 |
+
[20]9.5170,[21]9.8598,[22]9.7668,[23]9.9612,[24]10.2602,[25]10.4634,[26]10.2184,[27]10.6180,[28]10.9536,[29]10.9679,
|
127 |
+
save_imatrix: stored collected data after 30 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
128 |
+
[30]10.9801,[31]10.3070,[32]9.9868,[33]9.7875,[34]9.5917,[35]9.4165,[36]9.5329,[37]9.6184,[38]9.6592,[39]9.8440,
|
129 |
+
save_imatrix: stored collected data after 40 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
130 |
+
[40]10.0160,[41]10.2362,[42]10.6853,[43]11.1262,[44]11.5383,[45]11.8299,[46]11.6111,[47]11.6185,[48]11.8422,[49]12.0250,
|
131 |
+
save_imatrix: stored collected data after 50 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
132 |
+
[50]11.7259,[51]11.7196,[52]11.7691,[53]11.9141,[54]12.1620,[55]12.3426,[56]12.3606,[57]12.3162,[58]12.3310,[59]12.1155,
|
133 |
+
save_imatrix: stored collected data after 60 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
134 |
+
[60]11.9746,[61]11.7975,[62]11.7242,[63]11.8352,[64]11.8168,[65]11.7588,[66]11.7814,[67]11.7153,[68]11.6185,[69]11.6467,
|
135 |
+
save_imatrix: stored collected data after 70 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
136 |
+
[70]11.6254,[71]11.5979,[72]11.5952,[73]11.5336,[74]11.4763,[75]11.4137,[76]11.4002,[77]11.4239,[78]11.3978,[79]11.3428,
|
137 |
+
save_imatrix: stored collected data after 80 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
138 |
+
[80]11.4072,[81]11.4531,[82]11.4131,[83]11.4049,[84]11.4603,[85]11.2951,[86]11.2648,[87]11.1973,[88]11.1809,[89]11.1978,
|
139 |
+
save_imatrix: stored collected data after 90 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
140 |
+
[90]11.2027,[91]11.0999,[92]10.9946,[93]10.8726,[94]10.7512,[95]10.6614,[96]10.5603,[97]10.4626,[98]10.3759,[99]10.3884,
|
141 |
+
save_imatrix: stored collected data after 100 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
142 |
+
[100]10.3982,[101]10.5283,[102]10.6240,[103]10.7161,[104]10.9227,[105]11.0803,[106]11.1020,[107]11.1251,[108]11.1344,[109]11.1136,
|
143 |
+
save_imatrix: stored collected data after 110 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
144 |
+
[110]11.0937,[111]11.0223,[112]10.9389,[113]10.9760,[114]10.9900,[115]10.9929,[116]10.9726,[117]11.0118,[118]11.0338,[119]11.0361,
|
145 |
+
save_imatrix: stored collected data after 120 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
146 |
+
[120]11.0343,[121]11.0230,[122]10.9614,[123]11.0533,[124]11.1411,[125]11.2224,[126]11.3357,[127]11.4332,[128]11.5265,
|
147 |
+
save_imatrix: stored collected data after 128 chunks in gemma-2-2b-it-IMat-GGUF/imatrix.dat
|
148 |
+
|
149 |
+
llama_print_timings: load time = 1113.21 ms
|
150 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
151 |
+
llama_print_timings: prompt eval time = 34310.87 ms / 65536 tokens ( 0.52 ms per token, 1910.07 tokens per second)
|
152 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
153 |
+
llama_print_timings: total time = 36416.67 ms / 65537 tokens
|
154 |
+
|
155 |
+
Final estimate: PPL = 11.5265 +/- 0.19215
|