|
from transformers import PreTrainedModel |
|
from torchvision.models.resnet import ResNet, Bottleneck, BasicBlock |
|
import torch.nn.functional as F |
|
from .configuration_resnet import ResnetConfig |
|
|
|
|
|
BLOCK_MAPPING = {'basic': BasicBlock, 'bottleneck': Bottleneck} |
|
|
|
|
|
class ResnetModelForImageClassification(PreTrainedModel): |
|
config_class = ResnetConfig |
|
def __init__(self, config): |
|
super().__init__(config) |
|
block_layer = BLOCK_MAPPING[config.block_type] |
|
self.model = ResNet(block_layer, config.layers, config.num_classes) |
|
|
|
def forward(self, tensor, labels=None): |
|
logits = self.model(tensor) |
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
return {'loss': loss, 'logits': logits} |
|
return {'logits': logits} |
|
|