update for eval
Browse files- config.json +30 -0
- configuration_japanese_stablelm_alpha.py +120 -0
- generation_config.json +6 -0
- modeling_japanese_stablelm_alpha.py +682 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/japanese-stablelm-instruct-alpha-7b",
|
3 |
+
"architectures": [
|
4 |
+
"JapaneseStableLMAlphaForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "stabilityai/japanese-stablelm-instruct-alpha-7b--configuration_japanese_stablelm_alpha.JapaneseStableLMAlphaConfig",
|
8 |
+
"AutoModelForCausalLM": "stabilityai/japanese-stablelm-instruct-alpha-7b--modeling_japanese_stablelm_alpha.JapaneseStableLMAlphaForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 3,
|
11 |
+
"classifier_dropout": 0.1,
|
12 |
+
"eos_token_id": 3,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 1024,
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"rotary_emb_base": 10000,
|
21 |
+
"rotary_pct": 0.25,
|
22 |
+
"rotary_scale_base": 512,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.30.2",
|
26 |
+
"use_bias_in_mlp": false,
|
27 |
+
"use_cache": false,
|
28 |
+
"use_parallel_residual": true,
|
29 |
+
"vocab_size": 65535
|
30 |
+
}
|
configuration_japanese_stablelm_alpha.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" JapaneseStableLMAlpha model configuration"""
|
16 |
+
|
17 |
+
from transformers import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
STABLE_LM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
class JapaneseStableLMAlphaConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
+
documentation from [`PretrainedConfig`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
33 |
+
Vocabulary size of the JapaneseStableLMAlphaModel. Defines the number of different tokens that
|
34 |
+
can be represented by the `inputs_ids` passed when calling [`JapaneseStableLMAlphaModel`].
|
35 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
36 |
+
Dimension of the decoder layers and the pooler layer.
|
37 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
38 |
+
Number of hidden layers in the Transformer decoder.
|
39 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
40 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
41 |
+
intermediate_size (`int`, *optional*, defaults to 16384):
|
42 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer decoder.
|
43 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
44 |
+
The non-linear activation function (function or string).
|
45 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
46 |
+
Percentage of hidden dimensions to allocate to rotary embeddings.
|
47 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
48 |
+
Base for computing rotary embeddings frequency.
|
49 |
+
rotary_scale_base (`int`, *optional*, defaults to 512)
|
50 |
+
Base `scale` for computing XPos rotary embeddings scale.
|
51 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
52 |
+
Argument used when doing token classification, used in the model
|
53 |
+
[`StableLMForTokenClassification`]. The dropout ratio for the hidden layer.
|
54 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
55 |
+
The maximum sequence length that this model might ever be used with.
|
56 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
57 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
58 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
59 |
+
all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions
|
64 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
65 |
+
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether to use a "parallel" formulation in each Transformer layer,
|
67 |
+
which can provide a slight training speedup at large scales.
|
68 |
+
Example:
|
69 |
+
|
70 |
+
```python
|
71 |
+
>>> from transformers import JapaneseStableLMAlphaConfig, JapaneseStableLMAlphaModel
|
72 |
+
|
73 |
+
>>> # Initializing a JapaneseStableLMAlpha style configuration
|
74 |
+
>>> configuration = JapaneseStableLMAlphaConfig()
|
75 |
+
|
76 |
+
>>> # Initializing a model (with random weights) from the style configuration
|
77 |
+
>>> model = JapaneseStableLMAlphaModel(configuration) # doctest: +SKIP
|
78 |
+
|
79 |
+
>>> # Accessing the model configuration
|
80 |
+
>>> configuration = model.config # doctest: +SKIP
|
81 |
+
```"""
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vocab_size=65536,
|
85 |
+
hidden_size=4096,
|
86 |
+
num_hidden_layers=32,
|
87 |
+
num_attention_heads=32,
|
88 |
+
hidden_act="silu",
|
89 |
+
rotary_pct=0.25,
|
90 |
+
rotary_emb_base=10000,
|
91 |
+
rotary_scale_base=512,
|
92 |
+
classifier_dropout=0.1,
|
93 |
+
max_position_embeddings=2048,
|
94 |
+
initializer_range=0.02,
|
95 |
+
layer_norm_eps=1e-5,
|
96 |
+
use_cache=True,
|
97 |
+
bos_token_id=3,
|
98 |
+
eos_token_id=3,
|
99 |
+
tie_word_embeddings=False,
|
100 |
+
use_parallel_residual=True,
|
101 |
+
use_bias_in_mlp=True,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
105 |
+
self.vocab_size = vocab_size
|
106 |
+
self.max_position_embeddings = max_position_embeddings
|
107 |
+
self.hidden_size = hidden_size
|
108 |
+
self.num_hidden_layers = num_hidden_layers
|
109 |
+
self.num_attention_heads = num_attention_heads
|
110 |
+
self.hidden_act = hidden_act
|
111 |
+
self.rotary_pct = rotary_pct
|
112 |
+
self.rotary_emb_base = rotary_emb_base
|
113 |
+
self.rotary_scale_base = rotary_scale_base
|
114 |
+
self.classifier_dropout = classifier_dropout
|
115 |
+
self.initializer_range = initializer_range
|
116 |
+
self.layer_norm_eps = layer_norm_eps
|
117 |
+
self.use_cache = use_cache
|
118 |
+
self.tie_word_embeddings = tie_word_embeddings
|
119 |
+
self.use_parallel_residual = use_parallel_residual
|
120 |
+
self.use_bias_in_mlp = use_bias_in_mlp
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 3,
|
4 |
+
"eos_token_id": 3,
|
5 |
+
"transformers_version": "4.30.2"
|
6 |
+
}
|
modeling_japanese_stablelm_alpha.py
ADDED
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch JapaneseStableLMAlpha model. """
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
from transformers.modeling_outputs import (
|
23 |
+
BaseModelOutputWithPast,
|
24 |
+
CausalLMOutputWithPast,
|
25 |
+
)
|
26 |
+
from transformers.modeling_utils import PreTrainedModel
|
27 |
+
from transformers.utils import logging
|
28 |
+
from .configuration_japanese_stablelm_alpha import JapaneseStableLMAlphaConfig
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
class JapaneseStableLMAlphaPreTrainedModel(PreTrainedModel):
|
35 |
+
"""
|
36 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
37 |
+
models.
|
38 |
+
"""
|
39 |
+
|
40 |
+
config_class = JapaneseStableLMAlphaConfig
|
41 |
+
base_model_prefix = "transformer"
|
42 |
+
supports_gradient_checkpointing = True
|
43 |
+
_no_split_modules = ["DecoderLayer"]
|
44 |
+
_skip_keys_device_placement = "past_key_values"
|
45 |
+
|
46 |
+
def _init_weights(self, module):
|
47 |
+
"""Initialize the weights"""
|
48 |
+
if isinstance(module, nn.Linear):
|
49 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
50 |
+
if module.bias is not None:
|
51 |
+
module.bias.data.zero_()
|
52 |
+
elif isinstance(module, nn.Embedding):
|
53 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
54 |
+
if module.padding_idx is not None:
|
55 |
+
module.weight.data[module.padding_idx].zero_()
|
56 |
+
elif isinstance(module, nn.LayerNorm):
|
57 |
+
if module.bias is not None:
|
58 |
+
module.bias.data.zero_()
|
59 |
+
if module.weight is not None:
|
60 |
+
module.weight.data.fill_(1.0)
|
61 |
+
|
62 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
63 |
+
if isinstance(module, JapaneseStableLMAlphaModel):
|
64 |
+
module.gradient_checkpointing = value
|
65 |
+
|
66 |
+
|
67 |
+
class JapaneseStableLMAlphaModel(JapaneseStableLMAlphaPreTrainedModel):
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__(config)
|
70 |
+
self.config = config
|
71 |
+
|
72 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
73 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
74 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
75 |
+
|
76 |
+
self.gradient_checkpointing = False
|
77 |
+
|
78 |
+
# Initialize weights and apply final processing
|
79 |
+
self.post_init()
|
80 |
+
|
81 |
+
def get_input_embeddings(self):
|
82 |
+
return self.embed_in
|
83 |
+
|
84 |
+
def set_input_embeddings(self, value):
|
85 |
+
self.embed_in = value
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
input_ids: Optional[torch.LongTensor] = None,
|
90 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
91 |
+
position_ids: Optional[torch.LongTensor] = None,
|
92 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
93 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
94 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
95 |
+
use_cache: Optional[bool] = None,
|
96 |
+
output_attentions: Optional[bool] = None,
|
97 |
+
output_hidden_states: Optional[bool] = None,
|
98 |
+
return_dict: Optional[bool] = None,
|
99 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
100 |
+
r"""
|
101 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
102 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
103 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
104 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
105 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
106 |
+
use_cache (`bool`, *optional*):
|
107 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
108 |
+
`past_key_values`).
|
109 |
+
"""
|
110 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
111 |
+
output_hidden_states = (
|
112 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
113 |
+
)
|
114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
115 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
116 |
+
|
117 |
+
if input_ids is not None and inputs_embeds is not None:
|
118 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
119 |
+
elif input_ids is not None:
|
120 |
+
input_shape = input_ids.size()
|
121 |
+
elif inputs_embeds is not None:
|
122 |
+
input_shape = inputs_embeds.size()[:-1]
|
123 |
+
else:
|
124 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
125 |
+
|
126 |
+
batch_size, seq_length = input_shape
|
127 |
+
|
128 |
+
if past_key_values is None:
|
129 |
+
past_length = 0
|
130 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
131 |
+
else:
|
132 |
+
past_length = past_key_values[0][0].size(-2)
|
133 |
+
|
134 |
+
if position_ids is None:
|
135 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
136 |
+
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
137 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
138 |
+
else:
|
139 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
140 |
+
|
141 |
+
# Attention mask.
|
142 |
+
if attention_mask is not None:
|
143 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
144 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
145 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
146 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
147 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
148 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
149 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
150 |
+
attention_mask = attention_mask[:, None, None, :]
|
151 |
+
|
152 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
153 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
154 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
155 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
156 |
+
# effectively the same as removing these entirely.
|
157 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
158 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
159 |
+
|
160 |
+
# Prepare head mask if needed
|
161 |
+
# 1.0 in head_mask indicate we keep the head
|
162 |
+
# attention_probs has shape bsz x n_heads x N x N
|
163 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
164 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
165 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
166 |
+
|
167 |
+
if inputs_embeds is None:
|
168 |
+
inputs_embeds = self.embed_in(input_ids)
|
169 |
+
|
170 |
+
hidden_states = inputs_embeds
|
171 |
+
|
172 |
+
if self.gradient_checkpointing and self.training:
|
173 |
+
if use_cache:
|
174 |
+
logger.warning(
|
175 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
176 |
+
)
|
177 |
+
use_cache = False
|
178 |
+
|
179 |
+
presents = () if use_cache else None
|
180 |
+
all_attentions = () if output_attentions else None
|
181 |
+
all_hidden_states = () if output_hidden_states else None
|
182 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
183 |
+
if output_hidden_states:
|
184 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
185 |
+
|
186 |
+
if self.gradient_checkpointing and self.training:
|
187 |
+
|
188 |
+
def create_custom_forward(module):
|
189 |
+
def custom_forward(*inputs):
|
190 |
+
# None for layer_past
|
191 |
+
return module(*inputs, use_cache, None, output_attentions)
|
192 |
+
|
193 |
+
return custom_forward
|
194 |
+
|
195 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
196 |
+
create_custom_forward(layer),
|
197 |
+
hidden_states,
|
198 |
+
attention_mask,
|
199 |
+
position_ids,
|
200 |
+
head_mask[i],
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
outputs = layer(
|
204 |
+
hidden_states,
|
205 |
+
attention_mask=attention_mask,
|
206 |
+
position_ids=position_ids,
|
207 |
+
head_mask=head_mask[i],
|
208 |
+
layer_past=layer_past,
|
209 |
+
use_cache=use_cache,
|
210 |
+
output_attentions=output_attentions,
|
211 |
+
)
|
212 |
+
hidden_states = outputs[0]
|
213 |
+
if use_cache is True:
|
214 |
+
presents = presents + (outputs[1],)
|
215 |
+
if output_attentions:
|
216 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
217 |
+
|
218 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
219 |
+
# Add last hidden state
|
220 |
+
if output_hidden_states:
|
221 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
222 |
+
|
223 |
+
if not return_dict:
|
224 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
225 |
+
|
226 |
+
return BaseModelOutputWithPast(
|
227 |
+
last_hidden_state=hidden_states,
|
228 |
+
past_key_values=presents,
|
229 |
+
hidden_states=all_hidden_states,
|
230 |
+
attentions=all_attentions,
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
class DecoderLayer(nn.Module):
|
235 |
+
def __init__(self, config):
|
236 |
+
super().__init__()
|
237 |
+
self.use_parallel_residual = config.use_parallel_residual
|
238 |
+
self.input_layernorm = nn.LayerNorm(
|
239 |
+
config.hidden_size,
|
240 |
+
eps=config.layer_norm_eps,
|
241 |
+
elementwise_affine=False,
|
242 |
+
)
|
243 |
+
self.post_attention_layernorm = nn.LayerNorm(
|
244 |
+
config.hidden_size,
|
245 |
+
eps=config.layer_norm_eps
|
246 |
+
)
|
247 |
+
self.attention = Attention(config)
|
248 |
+
self.mlp = MLP(config)
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
hidden_states: Optional[torch.FloatTensor],
|
253 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
254 |
+
position_ids: Optional[torch.LongTensor] = None,
|
255 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
256 |
+
use_cache: Optional[bool] = False,
|
257 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
258 |
+
output_attentions: Optional[bool] = False,
|
259 |
+
):
|
260 |
+
attention_layer_outputs = self.attention(
|
261 |
+
self.input_layernorm(hidden_states),
|
262 |
+
attention_mask=attention_mask,
|
263 |
+
position_ids=position_ids,
|
264 |
+
layer_past=layer_past,
|
265 |
+
head_mask=head_mask,
|
266 |
+
use_cache=use_cache,
|
267 |
+
output_attentions=output_attentions,
|
268 |
+
)
|
269 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
270 |
+
outputs = attention_layer_outputs[1:]
|
271 |
+
|
272 |
+
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
273 |
+
hidden_states = hidden_states + mlp_output + attn_output
|
274 |
+
|
275 |
+
if use_cache:
|
276 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
277 |
+
else:
|
278 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
279 |
+
|
280 |
+
return outputs
|
281 |
+
|
282 |
+
|
283 |
+
class MLP(nn.Module):
|
284 |
+
def __init__(self, config: JapaneseStableLMAlphaConfig):
|
285 |
+
super().__init__()
|
286 |
+
hidden_size = config.hidden_size
|
287 |
+
multiple_of = 256
|
288 |
+
ff_dim = int(8 * hidden_size / 3)
|
289 |
+
intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
|
290 |
+
|
291 |
+
self.packed_input_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
|
292 |
+
self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
293 |
+
self.act = nn.SiLU()
|
294 |
+
|
295 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
296 |
+
ff, ff_gate = self.packed_input_proj(x).chunk(2, dim=-1)
|
297 |
+
return self.out_proj(ff * self.act(ff_gate))
|
298 |
+
|
299 |
+
|
300 |
+
class RotaryEmbedding(torch.nn.Module):
|
301 |
+
"""Based on Tri Dao's XPos: https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/layers/rotary.py"""
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
dim: int,
|
305 |
+
max_position_embeddings: int,
|
306 |
+
base: int = 10_000,
|
307 |
+
scale_base: int = 512,
|
308 |
+
device: str = None
|
309 |
+
):
|
310 |
+
super().__init__()
|
311 |
+
self.dim = dim
|
312 |
+
self.seq_len_cached = max_position_embeddings
|
313 |
+
|
314 |
+
# Set up `inv_freq` term
|
315 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
316 |
+
self.register_buffer("inv_freq", inv_freq)
|
317 |
+
|
318 |
+
# Set up `scale` term
|
319 |
+
self.scale_base = scale_base
|
320 |
+
scale = (
|
321 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
322 |
+
if scale_base is not None else None
|
323 |
+
)
|
324 |
+
self.register_buffer("scale", scale)
|
325 |
+
|
326 |
+
# Seet up `cos..` and `sin...` cache terms
|
327 |
+
t = torch.arange(self.seq_len_cached, device=device, dtype=torch.float32)
|
328 |
+
freqs = torch.outer(t, self.inv_freq)
|
329 |
+
# freqs = torch.cat((freqs, freqs), dim=-1)
|
330 |
+
seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
|
331 |
+
power = (seq_range - self.seq_len_cached // 2) / self.scale_base
|
332 |
+
scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
333 |
+
# scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
|
334 |
+
self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
|
335 |
+
self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
|
336 |
+
self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
|
337 |
+
self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
|
338 |
+
|
339 |
+
def forward(self, x, seq_len=None):
|
340 |
+
if seq_len > self.seq_len_cached:
|
341 |
+
self.seq_len_cached = seq_len
|
342 |
+
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
|
343 |
+
freqs = torch.outer(t, self.inv_freq)
|
344 |
+
freqs = torch.cat((freqs, freqs), dim=-1)
|
345 |
+
seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
|
346 |
+
power = (seq_range - self.seq_len_cached // 2) / self.scale_base
|
347 |
+
scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
348 |
+
scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
|
349 |
+
self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
|
350 |
+
self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
|
351 |
+
self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
|
352 |
+
self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
|
353 |
+
return (
|
354 |
+
self.cos_cached[:seq_len, ...],
|
355 |
+
self.sin_cached[:seq_len, ...],
|
356 |
+
self.cos_k_cached[:seq_len, ...],
|
357 |
+
self.sin_k_cached[:seq_len, ...],
|
358 |
+
)
|
359 |
+
|
360 |
+
|
361 |
+
def rotate_half(x):
|
362 |
+
x1, x2 = x.chunk(2, dim=-1)
|
363 |
+
return torch.cat((-x2, x1), dim=-1)
|
364 |
+
|
365 |
+
|
366 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, cos_k=None, sin_k=None):
|
367 |
+
"""
|
368 |
+
q, k: [bs, num_heads, seq_len, rot_dim]
|
369 |
+
cos, sin: [seq_len, rot_dim / 2]
|
370 |
+
position_ids: [bs, seq_len]
|
371 |
+
"""
|
372 |
+
# print(f"q: {q.shape}, k: {k.shape}, cos: {cos.shape}, sin: {sin.shape}, position_ids: {position_ids.shape}")
|
373 |
+
import einops
|
374 |
+
cos = einops.repeat(cos, 's r -> s (2 r)')
|
375 |
+
sin = einops.repeat(sin, 's r -> s (2 r)')
|
376 |
+
cos_k = einops.repeat(cos_k, 's r -> s (2 r)')
|
377 |
+
sin_k = einops.repeat(sin_k, 's r -> s (2 r)')
|
378 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
|
379 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
|
380 |
+
cos_k = cos_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
|
381 |
+
sin_k = sin_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
|
382 |
+
|
383 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
384 |
+
k_embed = (k * cos_k) + (rotate_half(k) * sin_k)
|
385 |
+
return q_embed, k_embed
|
386 |
+
|
387 |
+
|
388 |
+
class Attention(nn.Module):
|
389 |
+
def __init__(self, config):
|
390 |
+
super().__init__()
|
391 |
+
self.num_attention_heads = config.num_attention_heads
|
392 |
+
self.hidden_size = config.hidden_size
|
393 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
394 |
+
raise ValueError(
|
395 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
|
396 |
+
)
|
397 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
398 |
+
|
399 |
+
max_positions = config.max_position_embeddings
|
400 |
+
self.register_buffer(
|
401 |
+
"bias",
|
402 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
403 |
+
1, 1, max_positions, max_positions
|
404 |
+
),
|
405 |
+
persistent=False,
|
406 |
+
)
|
407 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
408 |
+
|
409 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
410 |
+
self.rotary_emb = RotaryEmbedding(
|
411 |
+
self.rotary_ndims,
|
412 |
+
max_position_embeddings=config.max_position_embeddings,
|
413 |
+
base=config.rotary_emb_base,
|
414 |
+
scale_base=config.rotary_scale_base,
|
415 |
+
)
|
416 |
+
|
417 |
+
self.register_buffer(
|
418 |
+
"norm_factor",
|
419 |
+
torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()),
|
420 |
+
persistent=False,
|
421 |
+
)
|
422 |
+
|
423 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
424 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
425 |
+
|
426 |
+
def forward(
|
427 |
+
self,
|
428 |
+
hidden_states: torch.FloatTensor,
|
429 |
+
attention_mask: torch.FloatTensor,
|
430 |
+
position_ids: torch.LongTensor,
|
431 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
432 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
433 |
+
use_cache: Optional[bool] = False,
|
434 |
+
output_attentions: Optional[bool] = False,
|
435 |
+
):
|
436 |
+
has_layer_past = layer_past is not None
|
437 |
+
|
438 |
+
# Compute QKV
|
439 |
+
# Attention heads [batch, seq_len, hidden_size]
|
440 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
441 |
+
qkv = self.query_key_value(hidden_states)
|
442 |
+
|
443 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
444 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
445 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
446 |
+
qkv = qkv.view(*new_qkv_shape)
|
447 |
+
|
448 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
449 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
450 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
451 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
452 |
+
|
453 |
+
# Compute rotary embeddings on rotary_ndims
|
454 |
+
query_rot = query[..., : self.rotary_ndims]
|
455 |
+
query_pass = query[..., self.rotary_ndims :]
|
456 |
+
key_rot = key[..., : self.rotary_ndims]
|
457 |
+
key_pass = key[..., self.rotary_ndims :]
|
458 |
+
|
459 |
+
# Compute token offset for rotary embeddings (when decoding)
|
460 |
+
kv_seq_len = key.shape[-2]
|
461 |
+
if has_layer_past:
|
462 |
+
kv_seq_len += layer_past[0].shape[-2]
|
463 |
+
|
464 |
+
# Add rotary embeddings to query and key
|
465 |
+
# TODO: Check if using xpos
|
466 |
+
cos, sin, cos_k, sin_k = self.rotary_emb(value, seq_len=kv_seq_len)
|
467 |
+
query, key = apply_rotary_pos_emb(
|
468 |
+
query_rot, key_rot, cos, sin, position_ids, cos_k=cos_k, sin_k=sin_k)
|
469 |
+
|
470 |
+
query = torch.cat((query, query_pass), dim=-1)
|
471 |
+
key = torch.cat((key, key_pass), dim=-1)
|
472 |
+
|
473 |
+
# Cache QKV values
|
474 |
+
if has_layer_past:
|
475 |
+
past_key = layer_past[0]
|
476 |
+
past_value = layer_past[1]
|
477 |
+
key = torch.cat((past_key, key), dim=-2)
|
478 |
+
value = torch.cat((past_value, value), dim=-2)
|
479 |
+
present = (key, value) if use_cache else None
|
480 |
+
|
481 |
+
# Compute attention
|
482 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
483 |
+
|
484 |
+
# Merge attn_head_size dim and num_attn_heads dim into hidden dim
|
485 |
+
# [bs, seq_len, num_attention_heads, attn_head_size]
|
486 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
487 |
+
attn_output = attn_output.view(attn_output.size(0), attn_output.size(1), self.num_attention_heads * self.head_size)
|
488 |
+
|
489 |
+
attn_output = self.dense(attn_output)
|
490 |
+
|
491 |
+
outputs = (attn_output, present)
|
492 |
+
if output_attentions:
|
493 |
+
outputs += (attn_weights,)
|
494 |
+
|
495 |
+
return outputs
|
496 |
+
|
497 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
498 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
499 |
+
# compute causal mask from causal mask buffer
|
500 |
+
|
501 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
502 |
+
key_length = key.size(-2)
|
503 |
+
|
504 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
505 |
+
|
506 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
507 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
508 |
+
attn_scores = torch.zeros(
|
509 |
+
batch_size * num_attention_heads,
|
510 |
+
query_length,
|
511 |
+
key_length,
|
512 |
+
dtype=query.dtype,
|
513 |
+
device=key.device,
|
514 |
+
)
|
515 |
+
attn_scores = torch.baddbmm(
|
516 |
+
attn_scores,
|
517 |
+
query,
|
518 |
+
key.transpose(1, 2),
|
519 |
+
beta=1.0,
|
520 |
+
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
|
521 |
+
)
|
522 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
523 |
+
|
524 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
525 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
526 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
527 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype, device=attn_scores.device)
|
528 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
529 |
+
|
530 |
+
if attention_mask is not None:
|
531 |
+
# Apply the attention mask
|
532 |
+
attn_scores = attn_scores + attention_mask
|
533 |
+
|
534 |
+
# NOTE: Upcast to float32
|
535 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(value)
|
536 |
+
|
537 |
+
# Mask heads if we want to
|
538 |
+
if head_mask is not None:
|
539 |
+
attn_weights = attn_weights * head_mask
|
540 |
+
|
541 |
+
attn_output = torch.matmul(attn_weights, value)
|
542 |
+
return attn_output, attn_weights
|
543 |
+
|
544 |
+
|
545 |
+
def attention_mask_func(attention_scores, ltor_mask):
|
546 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
547 |
+
return attention_scores
|
548 |
+
|
549 |
+
|
550 |
+
class JapaneseStableLMAlphaForCausalLM(JapaneseStableLMAlphaPreTrainedModel):
|
551 |
+
_tied_weights_keys = ["embed_out.weight"]
|
552 |
+
|
553 |
+
def __init__(self, config):
|
554 |
+
super().__init__(config)
|
555 |
+
|
556 |
+
self.transformer = JapaneseStableLMAlphaModel(config)
|
557 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
558 |
+
|
559 |
+
# Initialize weights and apply final processing
|
560 |
+
self.post_init()
|
561 |
+
|
562 |
+
def get_output_embeddings(self):
|
563 |
+
return self.embed_out
|
564 |
+
|
565 |
+
def set_output_embeddings(self, new_embeddings):
|
566 |
+
self.embed_out = new_embeddings
|
567 |
+
|
568 |
+
def forward(
|
569 |
+
self,
|
570 |
+
input_ids: Optional[torch.LongTensor] = None,
|
571 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
572 |
+
position_ids: Optional[torch.LongTensor] = None,
|
573 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
574 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
575 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
576 |
+
labels: Optional[torch.LongTensor] = None,
|
577 |
+
use_cache: Optional[bool] = None,
|
578 |
+
output_attentions: Optional[bool] = None,
|
579 |
+
output_hidden_states: Optional[bool] = None,
|
580 |
+
return_dict: Optional[bool] = None,
|
581 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
582 |
+
r"""
|
583 |
+
Example:
|
584 |
+
|
585 |
+
```python
|
586 |
+
>>> import torch
|
587 |
+
>>> from transformers import LlamaTokenizer, JapaneseStableLMAlphaForCausalLM, JapaneseStableLMAlphaConfig
|
588 |
+
|
589 |
+
>>> tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1")
|
590 |
+
>>> config = JapaneseStableLMAlphaConfig.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b")
|
591 |
+
>>> config.is_decoder = True
|
592 |
+
>>> model = JapaneseStableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b", config=config, trust_remote_code=True)
|
593 |
+
|
594 |
+
>>> inputs = tokenizer("日本語の美しいところは、", return_tensors="pt")
|
595 |
+
>>> outputs = model(**inputs)
|
596 |
+
|
597 |
+
>>> prediction_logits = outputs.logits
|
598 |
+
```"""
|
599 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
600 |
+
|
601 |
+
outputs = self.transformer(
|
602 |
+
input_ids,
|
603 |
+
attention_mask=attention_mask,
|
604 |
+
position_ids=position_ids,
|
605 |
+
head_mask=head_mask,
|
606 |
+
inputs_embeds=inputs_embeds,
|
607 |
+
past_key_values=past_key_values,
|
608 |
+
use_cache=use_cache,
|
609 |
+
output_attentions=output_attentions,
|
610 |
+
output_hidden_states=output_hidden_states,
|
611 |
+
return_dict=return_dict,
|
612 |
+
)
|
613 |
+
|
614 |
+
hidden_states = outputs[0]
|
615 |
+
lm_logits = self.embed_out(hidden_states)
|
616 |
+
|
617 |
+
lm_loss = None
|
618 |
+
if labels is not None:
|
619 |
+
# move labels to correct device to enable model parallelism
|
620 |
+
labels = labels.to(lm_logits.device)
|
621 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
622 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
623 |
+
labels = labels[:, 1:].contiguous()
|
624 |
+
loss_fct = CrossEntropyLoss()
|
625 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
626 |
+
|
627 |
+
if not return_dict:
|
628 |
+
output = (lm_logits,) + outputs[1:]
|
629 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
630 |
+
|
631 |
+
return CausalLMOutputWithPast(
|
632 |
+
loss=lm_loss,
|
633 |
+
logits=lm_logits,
|
634 |
+
past_key_values=outputs.past_key_values,
|
635 |
+
hidden_states=outputs.hidden_states,
|
636 |
+
attentions=outputs.attentions,
|
637 |
+
)
|
638 |
+
|
639 |
+
def prepare_inputs_for_generation(
|
640 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
641 |
+
):
|
642 |
+
input_shape = input_ids.shape
|
643 |
+
|
644 |
+
# cut decoder_input_ids if past is used
|
645 |
+
if past_key_values and past_key_values[0] is not None:
|
646 |
+
input_ids = input_ids[:, -1:]
|
647 |
+
|
648 |
+
position_ids = kwargs.get("position_ids", None)
|
649 |
+
if attention_mask is not None and position_ids is None:
|
650 |
+
# create position_ids on the fly for batch generation
|
651 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
652 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
653 |
+
if past_key_values:
|
654 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
655 |
+
|
656 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
657 |
+
if attention_mask is None:
|
658 |
+
attention_mask = input_ids.new_ones(input_shape)
|
659 |
+
|
660 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
661 |
+
if inputs_embeds is not None and past_key_values is None:
|
662 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
663 |
+
else:
|
664 |
+
model_inputs = {"input_ids": input_ids}
|
665 |
+
|
666 |
+
model_inputs.update(
|
667 |
+
{
|
668 |
+
"attention_mask": attention_mask,
|
669 |
+
"past_key_values": past_key_values,
|
670 |
+
"position_ids": position_ids,
|
671 |
+
}
|
672 |
+
)
|
673 |
+
|
674 |
+
return model_inputs
|
675 |
+
|
676 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
677 |
+
reordered_past = ()
|
678 |
+
for layer_past in past_key_values:
|
679 |
+
reordered_past += (
|
680 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
681 |
+
)
|
682 |
+
return reordered_past
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:431f0de2749eac9f61b583f53295352192b26b861d0194832164aa9825ad8d10
|
3 |
+
size 14026364945
|