Qwen1.5-0.5B-OpenIT / README.md
lazarohurtado's picture
Update README.md
3c7fecb verified
|
raw
history blame
1.32 kB
metadata
datasets:
  - teknium/OpenHermes-2.5
  - garage-bAInd/Open-Platypus
  - databricks/databricks-dolly-15k
language:
  - en
library_name: transformers
pipeline_tag: question-answering

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "lazarohurtado/Qwen1.5-0.5B-OpenIT",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("lazarohurtado/Qwen1.5-0.5B-OpenIT")

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]