metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: videomae-base-finetuned-numbers-augmented
results: []
videomae-base-finetuned-numbers-augmented
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1494
- Accuracy: 0.9559
- F1: 0.9562
- Precision: 0.9568
- Recall: 0.9565
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2816
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.8968 | 0.25 | 704 | 0.8689 | 0.6878 | 0.6885 | 0.7423 | 0.6886 |
0.5002 | 1.25 | 1408 | 0.4374 | 0.8542 | 0.8531 | 0.8718 | 0.8535 |
0.3627 | 2.25 | 2112 | 0.1109 | 0.9623 | 0.9618 | 0.9647 | 0.9614 |
0.0289 | 3.25 | 2816 | 0.0374 | 0.9880 | 0.9880 | 0.9881 | 0.9880 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1