latif98's picture
Model save
ccc67dd verified
|
raw
history blame
4.57 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-isl-numbers-alphabet-nouns
    results: []

videomae-base-finetuned-isl-numbers-alphabet-nouns

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4278
  • Accuracy: 0.8875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 15800

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.5228 0.02 316 4.3514 0.2534
3.0795 1.02 632 2.8515 0.5816
1.8438 2.02 948 1.7508 0.7332
1.1451 3.02 1264 1.1464 0.7390
1.0637 4.02 1580 0.7995 0.7774
0.7795 5.02 1896 0.4938 0.8829
0.4484 6.02 2212 0.3833 0.8829
0.2162 7.02 2528 0.2512 0.9155
0.228 8.02 2844 0.1972 0.9309
0.1711 9.02 3160 0.1426 0.9482
0.2251 10.02 3476 0.0965 0.9559
0.1697 11.02 3792 0.1141 0.9539
0.1229 12.02 4108 0.1362 0.9539
0.0676 13.02 4424 0.0745 0.9655
0.1228 14.02 4740 0.0817 0.9635
0.0143 15.02 5056 0.0615 0.9693
0.0621 16.02 5372 0.0768 0.9597
0.0597 17.02 5688 0.0873 0.9635
0.0696 18.02 6004 0.1108 0.9539
0.2761 19.02 6320 0.1413 0.9520
0.129 20.02 6636 0.1471 0.9520
0.0828 21.02 6952 0.0608 0.9674
0.0544 22.02 7268 0.0533 0.9712
0.0509 23.02 7584 0.0499 0.9750
0.0308 24.02 7900 0.0956 0.9597
0.0729 25.02 8216 0.0753 0.9731
0.2328 26.02 8532 0.0774 0.9655
0.1085 27.02 8848 0.0609 0.9693
0.099 28.02 9164 0.0677 0.9674
0.1988 29.02 9480 0.1415 0.9559
0.0747 30.02 9796 0.0581 0.9712
0.0556 31.02 10112 0.0519 0.9693
0.0763 32.02 10428 0.0506 0.9731
0.0635 33.02 10744 0.0492 0.9750
0.0729 34.02 11060 0.0483 0.9693
0.0692 35.02 11376 0.0481 0.9750
0.1023 36.02 11692 0.0478 0.9712
0.0863 37.02 12008 0.0479 0.9750
0.0934 38.02 12324 0.0464 0.9712
0.0927 39.02 12640 0.0462 0.9712
0.0254 40.02 12956 0.0448 0.9731
0.043 41.02 13272 0.0450 0.9750
0.0695 42.02 13588 0.0448 0.9750
0.0398 43.02 13904 0.0440 0.9770
0.0455 44.02 14220 0.0436 0.9770
0.0423 45.02 14536 0.0437 0.9750
0.0602 46.02 14852 0.0438 0.9770
0.0407 47.02 15168 0.0437 0.9750
0.0435 48.02 15484 0.0435 0.9770
0.0463 49.02 15800 0.0436 0.9770

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1