metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-isl-numbers-alphabet-nouns
results: []
videomae-base-finetuned-isl-numbers-alphabet-nouns
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4278
- Accuracy: 0.8875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 15800
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.5228 | 0.02 | 316 | 4.3514 | 0.2534 |
3.0795 | 1.02 | 632 | 2.8515 | 0.5816 |
1.8438 | 2.02 | 948 | 1.7508 | 0.7332 |
1.1451 | 3.02 | 1264 | 1.1464 | 0.7390 |
1.0637 | 4.02 | 1580 | 0.7995 | 0.7774 |
0.7795 | 5.02 | 1896 | 0.4938 | 0.8829 |
0.4484 | 6.02 | 2212 | 0.3833 | 0.8829 |
0.2162 | 7.02 | 2528 | 0.2512 | 0.9155 |
0.228 | 8.02 | 2844 | 0.1972 | 0.9309 |
0.1711 | 9.02 | 3160 | 0.1426 | 0.9482 |
0.2251 | 10.02 | 3476 | 0.0965 | 0.9559 |
0.1697 | 11.02 | 3792 | 0.1141 | 0.9539 |
0.1229 | 12.02 | 4108 | 0.1362 | 0.9539 |
0.0676 | 13.02 | 4424 | 0.0745 | 0.9655 |
0.1228 | 14.02 | 4740 | 0.0817 | 0.9635 |
0.0143 | 15.02 | 5056 | 0.0615 | 0.9693 |
0.0621 | 16.02 | 5372 | 0.0768 | 0.9597 |
0.0597 | 17.02 | 5688 | 0.0873 | 0.9635 |
0.0696 | 18.02 | 6004 | 0.1108 | 0.9539 |
0.2761 | 19.02 | 6320 | 0.1413 | 0.9520 |
0.129 | 20.02 | 6636 | 0.1471 | 0.9520 |
0.0828 | 21.02 | 6952 | 0.0608 | 0.9674 |
0.0544 | 22.02 | 7268 | 0.0533 | 0.9712 |
0.0509 | 23.02 | 7584 | 0.0499 | 0.9750 |
0.0308 | 24.02 | 7900 | 0.0956 | 0.9597 |
0.0729 | 25.02 | 8216 | 0.0753 | 0.9731 |
0.2328 | 26.02 | 8532 | 0.0774 | 0.9655 |
0.1085 | 27.02 | 8848 | 0.0609 | 0.9693 |
0.099 | 28.02 | 9164 | 0.0677 | 0.9674 |
0.1988 | 29.02 | 9480 | 0.1415 | 0.9559 |
0.0747 | 30.02 | 9796 | 0.0581 | 0.9712 |
0.0556 | 31.02 | 10112 | 0.0519 | 0.9693 |
0.0763 | 32.02 | 10428 | 0.0506 | 0.9731 |
0.0635 | 33.02 | 10744 | 0.0492 | 0.9750 |
0.0729 | 34.02 | 11060 | 0.0483 | 0.9693 |
0.0692 | 35.02 | 11376 | 0.0481 | 0.9750 |
0.1023 | 36.02 | 11692 | 0.0478 | 0.9712 |
0.0863 | 37.02 | 12008 | 0.0479 | 0.9750 |
0.0934 | 38.02 | 12324 | 0.0464 | 0.9712 |
0.0927 | 39.02 | 12640 | 0.0462 | 0.9712 |
0.0254 | 40.02 | 12956 | 0.0448 | 0.9731 |
0.043 | 41.02 | 13272 | 0.0450 | 0.9750 |
0.0695 | 42.02 | 13588 | 0.0448 | 0.9750 |
0.0398 | 43.02 | 13904 | 0.0440 | 0.9770 |
0.0455 | 44.02 | 14220 | 0.0436 | 0.9770 |
0.0423 | 45.02 | 14536 | 0.0437 | 0.9750 |
0.0602 | 46.02 | 14852 | 0.0438 | 0.9770 |
0.0407 | 47.02 | 15168 | 0.0437 | 0.9750 |
0.0435 | 48.02 | 15484 | 0.0435 | 0.9770 |
0.0463 | 49.02 | 15800 | 0.0436 | 0.9770 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1