lamaabdulaziz's picture
update model card README.md
f629f7d
|
raw
history blame
1.9 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: AraElectra-finetuned-CrossVal-fnd
    results: []

AraElectra-finetuned-CrossVal-fnd

This model is a fine-tuned version of aubmindlab/araelectra-base-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1317
  • Macro F1: 0.9489
  • Accuracy: 0.9505
  • Precision: 0.9488
  • Recall: 0.9490

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Macro F1 Accuracy Precision Recall
0.3788 1.0 798 0.1687 0.9453 0.9473 0.9480 0.9431
0.2273 2.0 1597 0.1876 0.9200 0.9239 0.9306 0.9134
0.1611 3.0 2395 0.1317 0.9489 0.9505 0.9488 0.9490
0.0972 4.0 3192 0.1685 0.9484 0.9501 0.9489 0.9479

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2