|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from cog import BasePredictor, Input |
|
|
import logging |
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Predictor(BasePredictor): |
|
|
def setup(self) -> None: |
|
|
"""Load the DevOps SLM model into memory with optimizations""" |
|
|
logger.info("Loading DevOps SLM model with memory optimizations...") |
|
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
logger.info(f"Using device: {self.device}") |
|
|
|
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
|
"lakhera2023/devops-slm", |
|
|
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, |
|
|
device_map="auto" if self.device == "cuda" else None, |
|
|
low_cpu_mem_usage=True, |
|
|
trust_remote_code=True, |
|
|
|
|
|
use_cache=False, |
|
|
attn_implementation="eager" |
|
|
) |
|
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("lakhera2023/devops-slm") |
|
|
|
|
|
|
|
|
if self.tokenizer.pad_token is None: |
|
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
logger.info("DevOps SLM model loaded successfully with optimizations!") |
|
|
|
|
|
def predict( |
|
|
self, |
|
|
prompt: str = Input(description="DevOps question or task prompt"), |
|
|
max_tokens: int = Input(description="Maximum number of tokens to generate", default=150, ge=1, le=500), |
|
|
temperature: float = Input(description="Sampling temperature", default=0.7, ge=0.1, le=2.0), |
|
|
top_p: float = Input(description="Top-p sampling parameter", default=0.9, ge=0.1, le=1.0), |
|
|
top_k: int = Input(description="Top-k sampling parameter", default=50, ge=1, le=100), |
|
|
) -> str: |
|
|
"""Generate DevOps response using the specialized model""" |
|
|
try: |
|
|
logger.info(f"Generating response for prompt: {prompt[:100]}...") |
|
|
|
|
|
|
|
|
inputs = self.tokenizer([prompt], return_tensors="pt", truncation=True, max_length=256).to(self.device) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = self.model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
do_sample=True, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
pad_token_id=self.tokenizer.eos_token_id, |
|
|
eos_token_id=self.tokenizer.eos_token_id, |
|
|
repetition_penalty=1.1, |
|
|
no_repeat_ngram_size=2, |
|
|
early_stopping=True, |
|
|
use_cache=False, |
|
|
output_attentions=False, |
|
|
output_hidden_states=False |
|
|
) |
|
|
|
|
|
|
|
|
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
if prompt in full_response: |
|
|
response = full_response.split(prompt)[-1].strip() |
|
|
else: |
|
|
response = full_response.strip() |
|
|
|
|
|
|
|
|
response = response.replace("<|im_start|>", "").replace("<|im_end|>", "").strip() |
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
logger.info(f"Generated response length: {len(response)}") |
|
|
return response |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error generating response: {e}") |
|
|
return f"Error: {str(e)}" |