|
--- |
|
license: mit |
|
base_model: Microsoft/Multilingual-MiniLM-L12-H384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: my-model-MiniLM-Area |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my-model-MiniLM-Area |
|
|
|
This model is a fine-tuned version of [Microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/Microsoft/Multilingual-MiniLM-L12-H384) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3835 |
|
- Accuracy: 0.4748 |
|
- F1: 0.4280 |
|
- Precision: 0.4147 |
|
- Recall: 0.4748 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.8171 | 1.0 | 81 | 1.7710 | 0.2302 | 0.0862 | 0.0530 | 0.2302 | |
|
| 1.7264 | 2.0 | 162 | 1.6322 | 0.4101 | 0.2695 | 0.2007 | 0.4101 | |
|
| 1.5603 | 3.0 | 243 | 1.5425 | 0.3885 | 0.2544 | 0.1943 | 0.3885 | |
|
| 1.4237 | 4.0 | 324 | 1.5997 | 0.4317 | 0.3424 | 0.2883 | 0.4317 | |
|
| 1.2819 | 5.0 | 405 | 1.5824 | 0.4101 | 0.3260 | 0.2763 | 0.4101 | |
|
| 1.1493 | 6.0 | 486 | 1.4762 | 0.4460 | 0.3670 | 0.4151 | 0.4460 | |
|
| 1.0688 | 7.0 | 567 | 1.4088 | 0.4748 | 0.4279 | 0.4418 | 0.4748 | |
|
| 0.9746 | 8.0 | 648 | 1.4380 | 0.4604 | 0.3957 | 0.3835 | 0.4604 | |
|
| 0.9039 | 9.0 | 729 | 1.4078 | 0.4748 | 0.4278 | 0.4147 | 0.4748 | |
|
| 0.8577 | 10.0 | 810 | 1.3835 | 0.4748 | 0.4280 | 0.4147 | 0.4748 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|