lBober's picture
lBober/my-model-MiniLM-Area
9c38b18 verified
|
raw
history blame
2.41 kB
---
license: mit
base_model: Microsoft/Multilingual-MiniLM-L12-H384
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my-model-MiniLM-Area
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my-model-MiniLM-Area
This model is a fine-tuned version of [Microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/Microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3835
- Accuracy: 0.4748
- F1: 0.4280
- Precision: 0.4147
- Recall: 0.4748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.8171 | 1.0 | 81 | 1.7710 | 0.2302 | 0.0862 | 0.0530 | 0.2302 |
| 1.7264 | 2.0 | 162 | 1.6322 | 0.4101 | 0.2695 | 0.2007 | 0.4101 |
| 1.5603 | 3.0 | 243 | 1.5425 | 0.3885 | 0.2544 | 0.1943 | 0.3885 |
| 1.4237 | 4.0 | 324 | 1.5997 | 0.4317 | 0.3424 | 0.2883 | 0.4317 |
| 1.2819 | 5.0 | 405 | 1.5824 | 0.4101 | 0.3260 | 0.2763 | 0.4101 |
| 1.1493 | 6.0 | 486 | 1.4762 | 0.4460 | 0.3670 | 0.4151 | 0.4460 |
| 1.0688 | 7.0 | 567 | 1.4088 | 0.4748 | 0.4279 | 0.4418 | 0.4748 |
| 0.9746 | 8.0 | 648 | 1.4380 | 0.4604 | 0.3957 | 0.3835 | 0.4604 |
| 0.9039 | 9.0 | 729 | 1.4078 | 0.4748 | 0.4278 | 0.4147 | 0.4748 |
| 0.8577 | 10.0 | 810 | 1.3835 | 0.4748 | 0.4280 | 0.4147 | 0.4748 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1