lBober's picture
lBober/my-model-MiniLM-Area
49fbc4e verified
|
raw
history blame
3.33 kB
metadata
license: mit
base_model: Microsoft/Multilingual-MiniLM-L12-H384
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my-model-MiniLM-Area
    results: []

my-model-MiniLM-Area

This model is a fine-tuned version of Microsoft/Multilingual-MiniLM-L12-H384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5228
  • Accuracy: 0.4323
  • F1: 0.3979
  • Precision: 0.3932
  • Recall: 0.4323

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.8812 1.0 25 1.8038 0.2839 0.1709 0.2712 0.2839
1.8043 2.0 50 1.7540 0.3742 0.2586 0.2046 0.3742
1.7687 3.0 75 1.6908 0.3806 0.2557 0.1927 0.3806
1.6959 4.0 100 1.6325 0.4 0.2695 0.2033 0.4
1.6178 5.0 125 1.6401 0.4129 0.3338 0.2874 0.4129
1.5189 6.0 150 1.5471 0.4581 0.3631 0.3030 0.4581
1.4393 7.0 175 1.5966 0.4258 0.3761 0.3451 0.4258
1.3757 8.0 200 1.5716 0.4452 0.3945 0.3556 0.4452
1.3032 9.0 225 1.5691 0.4387 0.3646 0.3443 0.4387
1.2434 10.0 250 1.5740 0.4452 0.4057 0.3798 0.4452
1.1837 11.0 275 1.5108 0.4645 0.3854 0.3852 0.4645
1.1231 12.0 300 1.5409 0.4516 0.3972 0.3561 0.4516
1.0815 13.0 325 1.5111 0.4774 0.4116 0.3865 0.4774
1.0555 14.0 350 1.5171 0.4645 0.4014 0.3674 0.4645
0.9964 15.0 375 1.4971 0.4581 0.3877 0.3504 0.4581
0.9627 16.0 400 1.5157 0.4516 0.4118 0.3882 0.4516
0.9247 17.0 425 1.4996 0.4387 0.3882 0.3664 0.4387
0.9286 18.0 450 1.4990 0.4452 0.4008 0.3856 0.4452
0.892 19.0 475 1.5288 0.4323 0.4025 0.4031 0.4323
0.8843 20.0 500 1.5228 0.4323 0.3979 0.3932 0.4323

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1