l3cube-pune commited on
Commit
1fa048c
·
1 Parent(s): ff5d400

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -58
README.md CHANGED
@@ -1,18 +1,75 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
3
  tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -70,57 +127,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 1977 with parameters:
89
- ```
90
- {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 4,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 790,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ license: cc-by-4.0
4
  tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
+ language:
10
+ - multilingual
11
+ - en
12
+ - hi
13
+ - mr
14
+ - kn
15
+ - ta
16
+ - te
17
+ - ml
18
+ - gu
19
+ - or
20
+ - pa
21
+ - bn
22
+ widget:
23
+ - source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
24
+ sentences:
25
+ - "दिवाळी आपण आनंदाने साजरी करतो"
26
+ - "दिवाळी हा दिव्यांचा सण आहे"
27
+ example_title: "Monolingual- Marathi"
28
+
29
+ - source_sentence: "हम दीपावली उत्साह के साथ मनाते हैं"
30
+ sentences:
31
+ - "हम दीपावली खुशियों से मनाते हैं"
32
+ - "दिवाली रोशनी का त्योहार है"
33
+ example_title: "Monolingual- Hindi"
34
+
35
+ - source_sentence: "અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ"
36
+ sentences:
37
+ - "દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ"
38
+ - "દિવાળી એ રોશનીનો તહેવાર છે"
39
+ example_title: "Monolingual- Gujarati"
40
+
41
+ - source_sentence: "आम्हाला भारतीय असल्याचा अभिमान आहे"
42
+ sentences:
43
+ - "हमें भारतीय होने पर गर्व है"
44
+ - "భారతీయులమైనందుకు గర్విస్తున్నాం"
45
+ - "અમને ભારતીય હોવાનો ગર્વ છે"
46
+ example_title: "Cross-lingual 1"
47
+
48
+ - source_sentence: "ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ"
49
+ sentences:
50
+ - "മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു"
51
+ - "ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |"
52
+ - "बारिश के बाद बगीचा सुंदर दिखता है"
53
+ example_title: "Cross-lingual 2"
54
  ---
55
 
56
+ # IndicSBERT-STS
57
 
58
+ This is a IndicSBERT model (l3cube-pune/indic-sentence-bert-nli) trained on the STS dataset of ten major Indian Languages. <br>
59
+ The single model works for English, Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
60
+ The model also has cross-lingual capabilities. <br>
61
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
62
 
63
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
64
+
65
+ ```
66
+ @article{joshi2022l3cubemahasbert,
67
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
68
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
69
+ journal={arXiv preprint arXiv:2211.11187},
70
+ year={2022}
71
+ }
72
+ ```
73
 
74
  ## Usage (Sentence-Transformers)
75
 
 
127
  print("Sentence embeddings:")
128
  print(sentence_embeddings)
129
  ```