l3cube-pune commited on
Commit
ff5d400
1 Parent(s): b86d5db

Update model files

Browse files
README.md CHANGED
@@ -5,69 +5,15 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
- language:
9
- - multilingual
10
- - hi
11
- - mr
12
- - kn
13
- - ta
14
- - te
15
- - ml
16
- - gu
17
- - or
18
- - pa
19
- - bn
20
- widget:
21
- - source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
22
- sentences:
23
- - "दिवाळी आपण आनंदाने साजरी करतो"
24
- - "दिवाळी हा दिव्यांचा सण आहे"
25
- example_title: "Monolingual- Marathi"
26
-
27
- - source_sentence: "हम दीपावली उत्साह के साथ मनाते हैं"
28
- sentences:
29
- - "हम दीपावली खुशियों से मनाते हैं"
30
- - "दिवाली रोशनी का त्योहार है"
31
- example_title: "Monolingual- Hindi"
32
-
33
- - source_sentence: "અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ"
34
- sentences:
35
- - "દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ"
36
- - "દિવાળી એ રોશનીનો તહેવાર છે"
37
- example_title: "Monolingual- Gujarati"
38
-
39
- - source_sentence: "आम्हाला भारतीय असल्याचा अभिमान आहे"
40
- sentences:
41
- - "हमें भारतीय होने पर गर्व है"
42
- - "భారతీయులమైనందుకు గర్విస్తున్నాం"
43
- - "અમને ભારતીય હોવાનો ગર્વ છે"
44
- example_title: "Cross-lingual 1"
45
-
46
- - source_sentence: "ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ"
47
- sentences:
48
- - "മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു"
49
- - "ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |"
50
- - "बारिश के बाद बगीचा सुंदर दिखता है"
51
- example_title: "Cross-lingual 2"
52
  ---
53
 
54
- # IndicSBERT-STS
55
 
56
- This is a IndicSBERT model (l3cube-pune/indic-sentence-bert-nli) trained on the STS dataset of ten major Indian Languages. <br>
57
- The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
58
- The model also has cross-lingual capabilities. <br>
59
- Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
60
 
61
- More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
62
 
63
- ```
64
- @article{joshi2022l3cubemahasbert,
65
- title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
66
- author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
67
- journal={arXiv preprint arXiv:2211.11187},
68
- year={2022}
69
- }
70
- ```
71
  ## Usage (Sentence-Transformers)
72
 
73
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -124,3 +70,57 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
124
  print("Sentence embeddings:")
125
  print(sentence_embeddings)
126
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
+ # {MODEL_NAME}
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
14
 
15
+ <!--- Describe your model here -->
16
 
 
 
 
 
 
 
 
 
17
  ## Usage (Sentence-Transformers)
18
 
19
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 1977 with parameters:
89
+ ```
90
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 4,
101
+ "evaluation_steps": 0,
102
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 2e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": null,
110
+ "warmup_steps": 790,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
+
126
+ <!--- Describe where people can find more information -->
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.2.2",
4
- "transformers": "4.25.1",
5
- "pytorch": "1.13.0+cu116"
6
  }
7
  }
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.2.2",
4
+ "transformers": "4.26.1",
5
+ "pytorch": "1.13.1+cu116"
6
  }
7
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6c1ed71e53b4fea83fdaaaa09fbed61efbb4125cd0d25b396bde4161a380fde7
3
  size 950293293
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ebe74695af9bbcf59fc53bee524c34a6e01531c032c0c9daa0ca9bc93f67f31
3
  size 950293293