kzipa's picture
80mil train
5eef30d
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f919f94fca0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f919f94fd30>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f919f94fdc0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f919f94fe50>",
"_build": "<function ActorCriticPolicy._build at 0x7f919f94fee0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f919f94ff70>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f919f953040>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f919f9530d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f919f953160>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f919f9531f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f919f953280>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f919f941870>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 80003072,
"_total_timesteps": 80000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1671733008522193592,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2t6aXBhL2FuYWNvbmRhMy9lbnZzL0h1Z2dpbmdGYWNlL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9remlwYS9hbmFjb25kYTMvZW52cy9IdWdnaW5nRmFjZS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Cejy2d64/VmcmPvkRuL6Ml+48NpoxPgAAAAAAAAAAMzfFvc/qdz1WFe8+un/hvrFQyz3eF7E+AAAAAAAAAADNWNu7aTkHvIfKMj7KpWO+rucuPOv2c78AAIA/AACAP83v8z1cK4A++wOQvl/9I79e3AU+FDWAvgAAAAAAAAAAgBAePbi5nrtvJSa+JbFIPe2BEbw0SYO8AACAPwAAgD+mcYM9heKPP6rpoD7nN1e/TLIaPqzDnT4AAAAAAAAAAM2gn7uF1Li7nB6BPU+0HTyiuxe9anUKPQAAgD8AAIA/M1cWPLjUubt1Zgg83/NYPLcPHD0TrTq9AACAPwAAgD/NTDM5pAB6uVYYLbRCPgmvk3sOuummtTMAAIA/AACAP5ojpjxIiYW6PbkMuEyQCLPRfOU6ldAjNwAAgD8AAIA/ADi4O669g7pUYaI2Bn6oMd6Ro7oprL+1AACAPwAAgD8AZlE8Bdrku1IrQjzpyJo8Z98/vR93gT0AAIA/AACAPwZyTz5N3FQ/2M6PPSnXQb8s6Ac/sJn3vQAAAAAAAAAAZlYGvArvYLta69U9pIaOPaZwXry0yxq7AACAPwAAgD8m9ES+muZTP41lnb5e0kS/yDz7vgj12b0AAAAAAAAAAJqZjDjDeUa6aJAdN4QOLDIxZjs18u46tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -3.8399999999993994e-05,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITbwDPGkAcUCUhpRSlIwBbJRLnowBdJRHQNwooFspG4J1fZQoaAZoCWgPQwjXwiy0sx1zQJSGlFKUaBVLomgWR0DcKKcnNPgvdX2UKGgGaAloD0MIm64nuq60ckCUhpRSlGgVS5xoFkdA3Cin9XtBwHV9lChoBmgJaA9DCPsFu2EbmXBAlIaUUpRoFUuaaBZHQNwpdKXKKYR1fZQoaAZoCWgPQwjlC1pIgOxzQJSGlFKUaBVLqmgWR0DcKXV5gPVedX2UKGgGaAloD0MI+BxYjpBqckCUhpRSlGgVS6doFkdA3Cl3JLdvbXV9lChoBmgJaA9DCFcKgVwiW3NAlIaUUpRoFUu6aBZHQNwpd1RLsa91fZQoaAZoCWgPQwjSVE/m31RxQJSGlFKUaBVLo2gWR0DcKXdLh73PdX2UKGgGaAloD0MIxXB1AER8ckCUhpRSlGgVS7NoFkdA3Cl5gg5imXV9lChoBmgJaA9DCPzepj97pHBAlIaUUpRoFUuOaBZHQNwpexx1gYx1fZQoaAZoCWgPQwhYO4pz1PlxQJSGlFKUaBVLqGgWR0DcKXt0nw5OdX2UKGgGaAloD0MICcIVUKhpc0CUhpRSlGgVS7NoFkdA3Cl9V8Ti83V9lChoBmgJaA9DCERuhhvw9nJAlIaUUpRoFUu3aBZHQNwpf6PwNLF1fZQoaAZoCWgPQwhffxKfu5hwQJSGlFKUaBVLjmgWR0DcKX+WAwwkdX2UKGgGaAloD0MIhKCjVa3RZkCUhpRSlGgVTegDaBZHQNwpgoqLCN11fZQoaAZoCWgPQwhRweEFkX5yQJSGlFKUaBVLqmgWR0DcKYjSBshxdX2UKGgGaAloD0MIMJxrmGHUcECUhpRSlGgVS5JoFkdA3CmOH+qBE3V9lChoBmgJaA9DCJF/ZhAfD3BAlIaUUpRoFUuraBZHQNwpj3KSxJN1fZQoaAZoCWgPQwhY5ULlX8hwQJSGlFKUaBVLm2gWR0DcKZFOM2m6dX2UKGgGaAloD0MIQ+IeS187cUCUhpRSlGgVS55oFkdA3CmRwwTM7nV9lChoBmgJaA9DCCxmhLeHhnBAlIaUUpRoFUuuaBZHQNwpkiRfWtl1fZQoaAZoCWgPQwiCOuXRzfpxQJSGlFKUaBVLiWgWR0DcKZInssxxdX2UKGgGaAloD0MI84++SROScUCUhpRSlGgVS6VoFkdA3CmSyD7Ik3V9lChoBmgJaA9DCIc2ABvQPnJAlIaUUpRoFUvJaBZHQNwpk6AnUlR1fZQoaAZoCWgPQwiCHmrbMKJuQJSGlFKUaBVLkWgWR0DcKZOZSeiBdX2UKGgGaAloD0MINPeQ8L1+c0CUhpRSlGgVS61oFkdA3CmV176YV3V9lChoBmgJaA9DCE1KQbcX13JAlIaUUpRoFUujaBZHQNwpl6tga3t1fZQoaAZoCWgPQwj0o+GUudhuQJSGlFKUaBVLmWgWR0DcKZg6FM7EdX2UKGgGaAloD0MIhEVFnE7AckCUhpRSlGgVS6NoFkdA3CmZiqABk3V9lChoBmgJaA9DCM8u3/ow3nFAlIaUUpRoFUujaBZHQNwpnCUC7sh1fZQoaAZoCWgPQwiDGVOwRtxwQJSGlFKUaBVLiGgWR0DcKZ3gxagVdX2UKGgGaAloD0MIg2itaHNrcUCUhpRSlGgVS4ZoFkdA3CmijQRf4XV9lChoBmgJaA9DCHB87Zklo3JAlIaUUpRoFUuQaBZHQNwpqC4e9zx1fZQoaAZoCWgPQwiB7WDE/i9xQJSGlFKUaBVLo2gWR0DcKaiyJKradX2UKGgGaAloD0MIHLYtyuwmckCUhpRSlGgVS6NoFkdA3CmqpB5X2nV9lChoBmgJaA9DCFvtYS9U7nBAlIaUUpRoFUuWaBZHQNwpqvhAGB51fZQoaAZoCWgPQwiOW8zPTURyQJSGlFKUaBVNPQNoFkdA3CmsQ2/BWXV9lChoBmgJaA9DCCrKpfGLAm9AlIaUUpRoFUuraBZHQNwprIsqaw51fZQoaAZoCWgPQwgpCB7fngByQJSGlFKUaBVLoGgWR0DcKazDTBqLdX2UKGgGaAloD0MISWk2j8MlcUCUhpRSlGgVS69oFkdA3Cmthg3Lm3V9lChoBmgJaA9DCOIFEalpAHNAlIaUUpRoFUu3aBZHQNwpsuM+/xl1fZQoaAZoCWgPQwhWEANduxh0QJSGlFKUaBVLqWgWR0DcKbNsoDxLdX2UKGgGaAloD0MIqyAGujaackCUhpRSlGgVS9JoFkdA3CmzuVHFxXV9lChoBmgJaA9DCJfmVggrsnNAlIaUUpRoFUu3aBZHQNwptPdl/Yt1fZQoaAZoCWgPQwiDMo0mF5BzQJSGlFKUaBVLrGgWR0DcKbViy6czdX2UKGgGaAloD0MI6tDpeXfQcUCUhpRSlGgVS6BoFkdA3Cm2N0vGqHV9lChoBmgJaA9DCFuxv+xeKnJAlIaUUpRoFUuiaBZHQNwpuBuTA311fZQoaAZoCWgPQwjoTNpUnY9yQJSGlFKUaBVLuGgWR0DcKcAKsuFpdX2UKGgGaAloD0MI/OHnv8c5ckCUhpRSlGgVS49oFkdA3CnBSSeRP3V9lChoBmgJaA9DCG6LMhvk4HNAlIaUUpRoFUuiaBZHQNwpwqpkwvh1fZQoaAZoCWgPQwg4Z0RpL0xyQJSGlFKUaBVLkGgWR0DcKcMUzsQedX2UKGgGaAloD0MIDFcHQJxvckCUhpRSlGgVS6toFkdA3CnDrkbPyHV9lChoBmgJaA9DCFRU/Uqn/XNAlIaUUpRoFUuhaBZHQNwpxgtrbg11fZQoaAZoCWgPQwijAbwFUkJzQJSGlFKUaBVLrGgWR0DcKcZjZteldX2UKGgGaAloD0MIK27cYv58ckCUhpRSlGgVS65oFkdA3CnIJyhi9nV9lChoBmgJaA9DCPbQPlZwhnFAlIaUUpRoFUuLaBZHQNwpyYGdI5J1fZQoaAZoCWgPQwh/2xMkNvBzQJSGlFKUaBVLt2gWR0DcKcowRGtqdX2UKGgGaAloD0MI8iTpmsnkckCUhpRSlGgVS4ZoFkdA3CnM65XlsHV9lChoBmgJaA9DCLYvoBfu23BAlIaUUpRoFUupaBZHQNwpzQmVqvh1fZQoaAZoCWgPQwiOBvAWiElxQJSGlFKUaBVLqmgWR0DcKc2rq+rVdX2UKGgGaAloD0MI7iJMUe6XcUCUhpRSlGgVS6BoFkdA3CnOA4XGfnV9lChoBmgJaA9DCJI81/dhv3NAlIaUUpRoFUu8aBZHQNwp0arzXjF1fZQoaAZoCWgPQwhyo8hagzVyQJSGlFKUaBVLwGgWR0DcKdOXw9aEdX2UKGgGaAloD0MIjxg9t1AAdECUhpRSlGgVS6BoFkdA3CnYoBJZn3V9lChoBmgJaA9DCDEnaJMD0nBAlIaUUpRoFUuaaBZHQNwp2meHzpZ1fZQoaAZoCWgPQwgGLLmKRetwQJSGlFKUaBVLoGgWR0DcKdsGW2PUdX2UKGgGaAloD0MIPl5Ih4dzcECUhpRSlGgVS5RoFkdA3CncdLQHA3V9lChoBmgJaA9DCM+B5QgZgXJAlIaUUpRoFUuoaBZHQNwp3UhV2id1fZQoaAZoCWgPQwj76T9rPlxzQJSGlFKUaBVLwWgWR0DcKd8FB6a9dX2UKGgGaAloD0MIDwwgfOi4cUCUhpRSlGgVS6VoFkdA3CnfcghbGHV9lChoBmgJaA9DCJD11OorA3JAlIaUUpRoFUuaaBZHQNwp36f4AS51fZQoaAZoCWgPQwhLy0i9Z7xxQJSGlFKUaBVLrGgWR0DcKeRoYekpdX2UKGgGaAloD0MIcXUAxF3Rb0CUhpRSlGgVS5JoFkdA3CnkkZ75VXV9lChoBmgJaA9DCMA+OnWlxHFAlIaUUpRoFUu/aBZHQNwp5pvxYq51fZQoaAZoCWgPQwg8bCIzlyVyQJSGlFKUaBVLi2gWR0DcKedj6N2ldX2UKGgGaAloD0MI/KvHfas7c0CUhpRSlGgVS65oFkdA3CnnvKEFn3V9lChoBmgJaA9DCKSoM/dQMXRAlIaUUpRoFUuvaBZHQNwp5/wAlv91fZQoaAZoCWgPQwikN9xHLnhxQJSGlFKUaBVLrmgWR0DcKeh4Z/CqdX2UKGgGaAloD0MIkPgVaziob0CUhpRSlGgVS55oFkdA3Cnr5HmRvHV9lChoBmgJaA9DCOiC+pa5a3JAlIaUUpRoFUuOaBZHQNwp8Ae3hGZ1fZQoaAZoCWgPQwhrSNxjaTFxQJSGlFKUaBVLnGgWR0DcKfLvnbItdX2UKGgGaAloD0MIsDic+VVdckCUhpRSlGgVS4VoFkdA3CnzyIpH7XV9lChoBmgJaA9DCCbjGMmeMXNAlIaUUpRoFUvIaBZHQNwp9/gWJrN1fZQoaAZoCWgPQwg2c0hqYX90QJSGlFKUaBVLxWgWR0DcKfx5TqB3dX2UKGgGaAloD0MIiWLyBhhfc0CUhpRSlGgVS7loFkdA3Cn9AWBSUHV9lChoBmgJaA9DCLPPY5TnA3NAlIaUUpRoFUu+aBZHQNwp/TMzMzN1fZQoaAZoCWgPQwhxWvCiL0pyQJSGlFKUaBVLzmgWR0DcKf0uDjBEdX2UKGgGaAloD0MIKsb5m5AkcUCUhpRSlGgVS5FoFkdA3Cn/HRCx/3V9lChoBmgJaA9DCJyjjo4rIHRAlIaUUpRoFUuxaBZHQNwqALLZBcB1fZQoaAZoCWgPQwgt0O6QIsZyQJSGlFKUaBVLsmgWR0DcKgEB/7SBdX2UKGgGaAloD0MIrrZif9locUCUhpRSlGgVS55oFkdA3CoBYF7laXV9lChoBmgJaA9DCJ6ZYDhXZ3JAlIaUUpRoFUulaBZHQNwqAdcKPXF1fZQoaAZoCWgPQwie6/tw0ER0QJSGlFKUaBVLqmgWR0DcKgHYVZcLdX2UKGgGaAloD0MIvXFSmHe1cUCUhpRSlGgVS7BoFkdA3CoERLsa9HV9lChoBmgJaA9DCF6CUx9IoHFAlIaUUpRoFUulaBZHQNwqBhP9DQZ1fZQoaAZoCWgPQwixbVFmA/5wQJSGlFKUaBVLnGgWR0DcKgizgMtsdX2UKGgGaAloD0MI+kLIef9PckCUhpRSlGgVS6FoFkdA3CoMTV2A5XV9lChoBmgJaA9DCKmkTkDTFnJAlIaUUpRoFUuraBZHQNwqDt03fhx1fZQoaAZoCWgPQwhuhhvwuW5yQJSGlFKUaBVLq2gWR0DcKhMiaAnVdX2UKGgGaAloD0MITYV4JN7tckCUhpRSlGgVS4poFkdA3CoUw8nuzHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 19532,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2t6aXBhL2FuYWNvbmRhMy9lbnZzL0h1Z2dpbmdGYWNlL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9remlwYS9hbmFjb25kYTMvZW52cy9IdWdnaW5nRmFjZS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}