kz919 commited on
Commit
6bd50b2
1 Parent(s): dcc287d

Adding model files

Browse files
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "kz919/sliding_llama3.1_8b_no_finetune",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_sliding_llama.LlamaConfig",
8
+ "AutoModelForCausalLM": "modeling_sliding_llama.LlamaForCausalLM"
9
+ },
10
+ "attention_bias": false,
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 128000,
13
+ "eos_token_id": 128001,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "llama",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "high_freq_factor": 4.0,
29
+ "low_freq_factor": 1.0,
30
+ "original_max_position_embeddings": 8192,
31
+ "rope_type": "llama3"
32
+ },
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.43.3",
37
+ "use_cache": true,
38
+ "vocab_size": 128256,
39
+ "sliding_windows": null
40
+ }
configuration_sliding_llama.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class LlamaConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the LLaMA-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`LlamaModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
63
+ Llama 2 up to 4096, CodeLlama up to 16384.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
80
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
81
+ issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
88
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
89
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
90
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
91
+ these scaling strategies behave:
92
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
93
+ experimental feature, subject to breaking API changes in future versions.
94
+ attention_bias (`bool`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+ mlp_bias (`bool`, *optional*, defaults to `False`):
99
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
100
+
101
+ ```python
102
+ >>> from transformers import LlamaModel, LlamaConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = LlamaConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = LlamaModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ mlp_bias=False,
140
+ sliding_windows = None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.hidden_size = hidden_size
146
+ self.intermediate_size = intermediate_size
147
+ self.num_hidden_layers = num_hidden_layers
148
+ self.num_attention_heads = num_attention_heads
149
+
150
+ # for backward compatibility
151
+ if num_key_value_heads is None:
152
+ num_key_value_heads = num_attention_heads
153
+
154
+ self.num_key_value_heads = num_key_value_heads
155
+ self.hidden_act = hidden_act
156
+ self.initializer_range = initializer_range
157
+ self.rms_norm_eps = rms_norm_eps
158
+ self.pretraining_tp = pretraining_tp
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.attention_bias = attention_bias
164
+ self.attention_dropout = attention_dropout
165
+ self.mlp_bias = mlp_bias
166
+ self.sliding_windows = sliding_windows if sliding_windows is not None else [0 for _ in range(num_hidden_layers)]
167
+ assert len(self.sliding_windows) == self.num_hidden_layers
168
+
169
+ super().__init__(
170
+ pad_token_id=pad_token_id,
171
+ bos_token_id=bos_token_id,
172
+ eos_token_id=eos_token_id,
173
+ tie_word_embeddings=tie_word_embeddings,
174
+ **kwargs,
175
+ )
176
+
177
+ def _rope_scaling_validation(self):
178
+ """
179
+ Validate the `rope_scaling` configuration.
180
+ """
181
+ if self.rope_scaling is None:
182
+ return
183
+
184
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
185
+ raise ValueError(
186
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
187
+ )
188
+ rope_scaling_type = self.rope_scaling.get("type", None)
189
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
190
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
191
+ raise ValueError(
192
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
193
+ )
194
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
195
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128001,
6
+ "temperature": 0.6,
7
+ "top_p": 0.9,
8
+ "transformers_version": "4.43.3",
9
+ "cache_implementation": "sliding_window"
10
+ }
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53352783d2887cc2e600f65098cdb2fcefc90cbc24182cf6a825ad0b84bdc9a4
3
+ size 4886466168
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0901d2e156c6ec7a375c3e90ae5183970af0445d3dc0e53c031b45673775dd64
3
+ size 4832007448
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afa0e22bcade9527b5aeb86066e139cc30979f8492c753ff3277e6189863ab97
3
+ size 4999813112
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc4f5352f30ea036b0a4e24ba9b029dd94a2b30a716c81acc1c4a5e7bb47a042
3
+ size 4999813128
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9450b209df4cb026b6669e618fcdb6ff4f5bd0a711fb2e502afe0b95eb3ad7
3
+ size 4832007496
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68db45b73e0ba04aec9bef14f87dbb7e86d8845d7082ee5da627192a3efa1e1c
3
+ size 4999813120
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fed8dd45ed7af9a48e182fccfecf72285421b6b1bb1cac1f4aeaef41554afa87
3
+ size 2571158184
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 32121044992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00007.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
296
+ "model.norm.weight": "model-00007-of-00007.safetensors"
297
+ }
298
+ }
modeling_sliding_llama.py ADDED
@@ -0,0 +1,1619 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaMA model."""
21
+ import inspect
22
+ import math
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
33
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
34
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ QuestionAnsweringModelOutput,
39
+ SequenceClassifierOutputWithPast,
40
+ )
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_2_available,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_sliding_llama import LlamaConfig
52
+
53
+
54
+ if is_flash_attn_2_available():
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+
58
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
59
+
60
+
61
+ logger = logging.get_logger(__name__)
62
+
63
+ _CONFIG_FOR_DOC = "LlamaConfig"
64
+
65
+
66
+ def _get_unpad_data(attention_mask):
67
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
68
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
69
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
70
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
71
+ return (
72
+ indices,
73
+ cu_seqlens,
74
+ max_seqlen_in_batch,
75
+ )
76
+
77
+
78
+ class LlamaRMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ LlamaRMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+
95
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
96
+
97
+
98
+ class LlamaRotaryEmbedding(nn.Module):
99
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
100
+ super().__init__()
101
+ self.scaling_factor = scaling_factor
102
+ self.dim = dim
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.base = base
105
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
106
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
107
+ # For BC we register cos and sin cached
108
+ self.max_seq_len_cached = max_position_embeddings
109
+
110
+ @torch.no_grad()
111
+ def forward(self, x, position_ids):
112
+ # x: [bs, num_attention_heads, seq_len, head_size]
113
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
114
+ position_ids_expanded = position_ids[:, None, :].float()
115
+ # Force float32 since bfloat16 loses precision on long contexts
116
+ # See https://github.com/huggingface/transformers/pull/29285
117
+ device_type = x.device.type
118
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
119
+ with torch.autocast(device_type=device_type, enabled=False):
120
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
121
+ emb = torch.cat((freqs, freqs), dim=-1)
122
+ cos = emb.cos()
123
+ sin = emb.sin()
124
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
125
+
126
+
127
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
128
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
129
+
130
+ def forward(self, x, position_ids):
131
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
132
+ position_ids = position_ids.float() / self.scaling_factor
133
+ cos, sin = super().forward(x, position_ids)
134
+ return cos, sin
135
+
136
+
137
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
138
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
139
+
140
+ def forward(self, x, position_ids):
141
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
142
+ seq_len = torch.max(position_ids) + 1
143
+ if seq_len > self.max_position_embeddings:
144
+ base = self.base * (
145
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
146
+ ) ** (self.dim / (self.dim - 2))
147
+ inv_freq = 1.0 / (
148
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
149
+ )
150
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
151
+
152
+ cos, sin = super().forward(x, position_ids)
153
+ return cos, sin
154
+
155
+
156
+ def rotate_half(x):
157
+ """Rotates half the hidden dims of the input."""
158
+ x1 = x[..., : x.shape[-1] // 2]
159
+ x2 = x[..., x.shape[-1] // 2 :]
160
+ return torch.cat((-x2, x1), dim=-1)
161
+
162
+
163
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
164
+ """Applies Rotary Position Embedding to the query and key tensors.
165
+
166
+ Args:
167
+ q (`torch.Tensor`): The query tensor.
168
+ k (`torch.Tensor`): The key tensor.
169
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
170
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
171
+ position_ids (`torch.Tensor`, *optional*):
172
+ Deprecated and unused.
173
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
174
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
175
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
176
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
177
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
178
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
179
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
180
+ Returns:
181
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
182
+ """
183
+ cos = cos.unsqueeze(unsqueeze_dim)
184
+ sin = sin.unsqueeze(unsqueeze_dim)
185
+ q_embed = (q * cos) + (rotate_half(q) * sin)
186
+ k_embed = (k * cos) + (rotate_half(k) * sin)
187
+ return q_embed, k_embed
188
+
189
+
190
+ class LlamaMLP(nn.Module):
191
+ def __init__(self, config):
192
+ super().__init__()
193
+ self.config = config
194
+ self.hidden_size = config.hidden_size
195
+ self.intermediate_size = config.intermediate_size
196
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
197
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
198
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
199
+ self.act_fn = ACT2FN[config.hidden_act]
200
+
201
+ def forward(self, x):
202
+ if self.config.pretraining_tp > 1:
203
+ slice = self.intermediate_size // self.config.pretraining_tp
204
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
205
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
206
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
207
+
208
+ gate_proj = torch.cat(
209
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
210
+ )
211
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
212
+
213
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
214
+ down_proj = [
215
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
216
+ ]
217
+ down_proj = sum(down_proj)
218
+ else:
219
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
220
+
221
+ return down_proj
222
+
223
+
224
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
225
+ """
226
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
227
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
228
+ """
229
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
230
+ if n_rep == 1:
231
+ return hidden_states
232
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
233
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
234
+
235
+
236
+ class LlamaAttention(nn.Module):
237
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
238
+
239
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
240
+ super().__init__()
241
+ self.config = config
242
+ self.layer_idx = layer_idx
243
+ if layer_idx is None:
244
+ logger.warning_once(
245
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
246
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
247
+ "when creating this class."
248
+ )
249
+
250
+ self.attention_dropout = config.attention_dropout
251
+ self.hidden_size = config.hidden_size
252
+ self.num_heads = config.num_attention_heads
253
+ self.head_dim = self.hidden_size // self.num_heads
254
+ self.num_key_value_heads = config.num_key_value_heads
255
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
256
+ self.max_position_embeddings = config.max_position_embeddings
257
+ self.rope_theta = config.rope_theta
258
+ self.is_causal = True
259
+
260
+ if (self.head_dim * self.num_heads) != self.hidden_size:
261
+ raise ValueError(
262
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
263
+ f" and `num_heads`: {self.num_heads})."
264
+ )
265
+
266
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
267
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
268
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
269
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
270
+ self._init_rope()
271
+
272
+ def _init_rope(self):
273
+ if self.config.rope_scaling is None:
274
+ self.rotary_emb = LlamaRotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.rope_theta,
278
+ )
279
+ else:
280
+ scaling_type = self.config.rope_scaling["type"]
281
+ scaling_factor = self.config.rope_scaling["factor"]
282
+ if scaling_type == "linear":
283
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
284
+ self.head_dim,
285
+ max_position_embeddings=self.max_position_embeddings,
286
+ scaling_factor=scaling_factor,
287
+ base=self.rope_theta,
288
+ )
289
+ elif scaling_type == "dynamic":
290
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
291
+ self.head_dim,
292
+ max_position_embeddings=self.max_position_embeddings,
293
+ scaling_factor=scaling_factor,
294
+ base=self.rope_theta,
295
+ )
296
+ else:
297
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
298
+
299
+ def forward(
300
+ self,
301
+ hidden_states: torch.Tensor,
302
+ attention_mask: Optional[torch.Tensor] = None,
303
+ position_ids: Optional[torch.LongTensor] = None,
304
+ past_key_value: Optional[Cache] = None,
305
+ output_attentions: bool = False,
306
+ use_cache: bool = False,
307
+ cache_position: Optional[torch.LongTensor] = None,
308
+ **kwargs,
309
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
310
+ bsz, q_len, _ = hidden_states.size()
311
+
312
+ if self.config.pretraining_tp > 1:
313
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
314
+ query_slices = self.q_proj.weight.split(
315
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
316
+ )
317
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
318
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
319
+
320
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
321
+ query_states = torch.cat(query_states, dim=-1)
322
+
323
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
324
+ key_states = torch.cat(key_states, dim=-1)
325
+
326
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
327
+ value_states = torch.cat(value_states, dim=-1)
328
+
329
+ else:
330
+ query_states = self.q_proj(hidden_states)
331
+ key_states = self.k_proj(hidden_states)
332
+ value_states = self.v_proj(hidden_states)
333
+
334
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
335
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
336
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
337
+
338
+ cos, sin = self.rotary_emb(value_states, position_ids)
339
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
340
+
341
+ if past_key_value is not None:
342
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
343
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
344
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
345
+
346
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
347
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
348
+
349
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
350
+
351
+ if attention_mask is not None: # no matter the length, we just slice it
352
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
353
+ attn_weights = attn_weights + causal_mask
354
+
355
+ # upcast attention to fp32
356
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
357
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
358
+ attn_output = torch.matmul(attn_weights, value_states)
359
+
360
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
361
+ raise ValueError(
362
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
363
+ f" {attn_output.size()}"
364
+ )
365
+
366
+ attn_output = attn_output.transpose(1, 2).contiguous()
367
+
368
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
369
+
370
+ if self.config.pretraining_tp > 1:
371
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
372
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
373
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
374
+ else:
375
+ attn_output = self.o_proj(attn_output)
376
+
377
+ if not output_attentions:
378
+ attn_weights = None
379
+
380
+ return attn_output, attn_weights, past_key_value
381
+
382
+
383
+ class LlamaFlashAttention2(LlamaAttention):
384
+ """
385
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
386
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
387
+ flash attention and deal with padding tokens in case the input contains any of them.
388
+ """
389
+
390
+ def __init__(self, *args, **kwargs):
391
+ super().__init__(*args, **kwargs)
392
+
393
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
394
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
395
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
396
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
397
+
398
+ def forward(
399
+ self,
400
+ hidden_states: torch.Tensor,
401
+ attention_mask: Optional[torch.LongTensor] = None,
402
+ position_ids: Optional[torch.LongTensor] = None,
403
+ past_key_value: Optional[Cache] = None,
404
+ output_attentions: bool = False,
405
+ use_cache: bool = False,
406
+ cache_position: Optional[torch.LongTensor] = None,
407
+ **kwargs,
408
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
409
+ if isinstance(past_key_value, StaticCache):
410
+ raise ValueError(
411
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
412
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
413
+ )
414
+
415
+ output_attentions = False
416
+
417
+ bsz, q_len, _ = hidden_states.size()
418
+
419
+ query_states = self.q_proj(hidden_states)
420
+ key_states = self.k_proj(hidden_states)
421
+ value_states = self.v_proj(hidden_states)
422
+
423
+ # Flash attention requires the input to have the shape
424
+ # batch_size x seq_length x head_dim x hidden_dim
425
+ # therefore we just need to keep the original shape
426
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
427
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
428
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
429
+
430
+ key_seq_len = key_states.shape[-2]
431
+ if past_key_value is not None:
432
+ if self.layer_idx is None:
433
+ raise ValueError(
434
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
435
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
436
+ "with a layer index."
437
+ )
438
+ # key_seq_len += cache_position[0]
439
+ key_seq_len += past_key_value.get_usable_length(key_seq_len, self.layer_idx)
440
+
441
+ rotary_seq_len = max(key_seq_len, position_ids[:, -1].max().item()) + 1
442
+ # cos, sin = self.rotary_emb(value_states, position_ids)
443
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
444
+
445
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
446
+
447
+ use_sliding_windows = (
448
+ _flash_supports_window_size
449
+ and getattr(self.config, "sliding_windows", None) is not None
450
+ and key_seq_len > self.config.sliding_windows[self.layer_idx]
451
+ and self.config.sliding_windows[self.layer_idx] > 0
452
+ )
453
+
454
+ if not _flash_supports_window_size:
455
+ logger.warning_once(
456
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
457
+ " make sure to upgrade flash-attn library"
458
+ )
459
+
460
+ if past_key_value is not None:
461
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
462
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
463
+ if (
464
+ getattr(self.config, "sliding_windows", None) is not None
465
+ and key_seq_len > self.config.sliding_windows[self.layer_idx]
466
+ and cache_has_contents
467
+ and self.config.sliding_windows[self.layer_idx] > 0
468
+ ):
469
+ slicing_tokens = 1 - self.config.sliding_windows[self.layer_idx]
470
+
471
+ past_key = past_key_value[self.layer_idx][0]
472
+ past_value = past_key_value[self.layer_idx][1]
473
+
474
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
475
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
476
+
477
+ if past_key.shape[-2] != self.config.sliding_windows[self.layer_idx] - 1:
478
+ raise ValueError(
479
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_windows[self.layer_idx]-1, head_dim`), got"
480
+ f" {past_key.shape}"
481
+ )
482
+
483
+ if attention_mask is not None:
484
+ attention_mask = attention_mask[:, slicing_tokens:]
485
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
486
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
487
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
488
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
489
+
490
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
491
+ # to be able to avoid many of these transpose/reshape/view.
492
+ query_states = query_states.transpose(1, 2)
493
+ key_states = key_states.transpose(1, 2)
494
+ value_states = value_states.transpose(1, 2)
495
+
496
+ dropout_rate = self.attention_dropout if self.training else 0.0
497
+
498
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
499
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
500
+ # cast them back in the correct dtype just to be sure everything works as expected.
501
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
502
+ # in fp32. (LlamaRMSNorm handles it correctly)
503
+
504
+ input_dtype = query_states.dtype
505
+ if input_dtype == torch.float32:
506
+ if torch.is_autocast_enabled():
507
+ target_dtype = torch.get_autocast_gpu_dtype()
508
+ # Handle the case where the model is quantized
509
+ elif hasattr(self.config, "_pre_quantization_dtype"):
510
+ target_dtype = self.config._pre_quantization_dtype
511
+ else:
512
+ target_dtype = self.q_proj.weight.dtype
513
+
514
+ logger.warning_once(
515
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
516
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
517
+ f" {target_dtype}."
518
+ )
519
+
520
+ query_states = query_states.to(target_dtype)
521
+ key_states = key_states.to(target_dtype)
522
+ value_states = value_states.to(target_dtype)
523
+
524
+ attn_output = self._flash_attention_forward(
525
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_sliding_windows=use_sliding_windows
526
+ )
527
+
528
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
529
+ attn_output = self.o_proj(attn_output)
530
+
531
+ if not output_attentions:
532
+ attn_weights = None
533
+
534
+ return attn_output, attn_weights, past_key_value
535
+
536
+ def _flash_attention_forward(
537
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False
538
+ ):
539
+ """
540
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
541
+ first unpad the input, then computes the attention scores and pad the final attention scores.
542
+
543
+ Args:
544
+ query_states (`torch.Tensor`):
545
+ Input query states to be passed to Flash Attention API
546
+ key_states (`torch.Tensor`):
547
+ Input key states to be passed to Flash Attention API
548
+ value_states (`torch.Tensor`):
549
+ Input value states to be passed to Flash Attention API
550
+ attention_mask (`torch.Tensor`):
551
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
552
+ position of padding tokens and 1 for the position of non-padding tokens.
553
+ dropout (`float`):
554
+ Attention dropout
555
+ softmax_scale (`float`, *optional*):
556
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
557
+ use_sliding_windows (`bool`, *optional*):
558
+ Whether to activate sliding window attention.
559
+ """
560
+ if not self._flash_attn_uses_top_left_mask:
561
+ causal = self.is_causal
562
+ else:
563
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
564
+ causal = self.is_causal and query_length != 1
565
+
566
+ # Contains at least one padding token in the sequence
567
+ if attention_mask is not None:
568
+ batch_size = query_states.shape[0]
569
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
570
+ query_states, key_states, value_states, attention_mask, query_length
571
+ )
572
+
573
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
574
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
575
+
576
+ if not use_sliding_windows:
577
+ attn_output_unpad = flash_attn_varlen_func(
578
+ query_states,
579
+ key_states,
580
+ value_states,
581
+ cu_seqlens_q=cu_seqlens_q,
582
+ cu_seqlens_k=cu_seqlens_k,
583
+ max_seqlen_q=max_seqlen_in_batch_q,
584
+ max_seqlen_k=max_seqlen_in_batch_k,
585
+ dropout_p=dropout,
586
+ softmax_scale=softmax_scale,
587
+ causal=causal,
588
+ )
589
+ else:
590
+ attn_output_unpad = flash_attn_varlen_func(
591
+ query_states,
592
+ key_states,
593
+ value_states,
594
+ cu_seqlens_q=cu_seqlens_q,
595
+ cu_seqlens_k=cu_seqlens_k,
596
+ max_seqlen_q=max_seqlen_in_batch_q,
597
+ max_seqlen_k=max_seqlen_in_batch_k,
598
+ dropout_p=dropout,
599
+ softmax_scale=softmax_scale,
600
+ causal=causal,
601
+ window_size=(self.config.sliding_windows[self.layer_idx], self.config.sliding_windows[self.layer_idx]),
602
+ )
603
+
604
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
605
+ else:
606
+ if not use_sliding_windows:
607
+ attn_output = flash_attn_func(
608
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
609
+ )
610
+ else:
611
+ attn_output = flash_attn_func(
612
+ query_states,
613
+ key_states,
614
+ value_states,
615
+ dropout,
616
+ softmax_scale=softmax_scale,
617
+ causal=causal,
618
+ window_size=(self.config.sliding_windows[self.layer_idx], self.config.sliding_windows[self.layer_idx]),
619
+ )
620
+ return attn_output
621
+
622
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
623
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
624
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
625
+
626
+ key_layer = index_first_axis(
627
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
628
+ )
629
+ value_layer = index_first_axis(
630
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
631
+ )
632
+ if query_length == kv_seq_len:
633
+ query_layer = index_first_axis(
634
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
635
+ )
636
+ cu_seqlens_q = cu_seqlens_k
637
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
638
+ indices_q = indices_k
639
+ elif query_length == 1:
640
+ max_seqlen_in_batch_q = 1
641
+ cu_seqlens_q = torch.arange(
642
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
643
+ ) # There is a memcpy here, that is very bad.
644
+ indices_q = cu_seqlens_q[:-1]
645
+ query_layer = query_layer.squeeze(1)
646
+ else:
647
+ # The -q_len: slice assumes left padding.
648
+ attention_mask = attention_mask[:, -query_length:]
649
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
650
+
651
+ return (
652
+ query_layer,
653
+ key_layer,
654
+ value_layer,
655
+ indices_q,
656
+ (cu_seqlens_q, cu_seqlens_k),
657
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
658
+ )
659
+
660
+
661
+ class LlamaSdpaAttention(LlamaAttention):
662
+ """
663
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
664
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
665
+ SDPA API.
666
+ """
667
+
668
+ # Adapted from LlamaAttention.forward
669
+ def forward(
670
+ self,
671
+ hidden_states: torch.Tensor,
672
+ attention_mask: Optional[torch.Tensor] = None,
673
+ position_ids: Optional[torch.LongTensor] = None,
674
+ past_key_value: Optional[Cache] = None,
675
+ output_attentions: bool = False,
676
+ use_cache: bool = False,
677
+ cache_position: Optional[torch.LongTensor] = None,
678
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
679
+ if output_attentions:
680
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
681
+ logger.warning_once(
682
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
683
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
684
+ )
685
+ return super().forward(
686
+ hidden_states=hidden_states,
687
+ attention_mask=attention_mask,
688
+ position_ids=position_ids,
689
+ past_key_value=past_key_value,
690
+ output_attentions=output_attentions,
691
+ use_cache=use_cache,
692
+ cache_position=cache_position,
693
+ )
694
+
695
+ bsz, q_len, _ = hidden_states.size()
696
+
697
+ query_states = self.q_proj(hidden_states)
698
+ key_states = self.k_proj(hidden_states)
699
+ value_states = self.v_proj(hidden_states)
700
+
701
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
702
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
703
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
704
+
705
+ cos, sin = self.rotary_emb(value_states, position_ids)
706
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
707
+
708
+ if past_key_value is not None:
709
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
710
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
711
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
712
+
713
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
714
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
715
+
716
+ causal_mask = attention_mask
717
+ if attention_mask is not None:
718
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
719
+
720
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
721
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
722
+ if query_states.device.type == "cuda" and causal_mask is not None:
723
+ query_states = query_states.contiguous()
724
+ key_states = key_states.contiguous()
725
+ value_states = value_states.contiguous()
726
+
727
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
728
+ # inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
729
+ is_causal = True if causal_mask is None and q_len > 1 else False
730
+
731
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
732
+ query_states,
733
+ key_states,
734
+ value_states,
735
+ attn_mask=causal_mask,
736
+ dropout_p=self.attention_dropout if self.training else 0.0,
737
+ is_causal=is_causal,
738
+ )
739
+
740
+ attn_output = attn_output.transpose(1, 2).contiguous()
741
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
742
+
743
+ attn_output = self.o_proj(attn_output)
744
+
745
+ return attn_output, None, past_key_value
746
+
747
+
748
+ LLAMA_ATTENTION_CLASSES = {
749
+ "eager": LlamaAttention,
750
+ "flash_attention_2": LlamaFlashAttention2,
751
+ "sdpa": LlamaSdpaAttention,
752
+ }
753
+
754
+
755
+ class LlamaDecoderLayer(nn.Module):
756
+ def __init__(self, config: LlamaConfig, layer_idx: int):
757
+ super().__init__()
758
+ self.hidden_size = config.hidden_size
759
+
760
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
761
+
762
+ self.mlp = LlamaMLP(config)
763
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
764
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
765
+
766
+ def forward(
767
+ self,
768
+ hidden_states: torch.Tensor,
769
+ attention_mask: Optional[torch.Tensor] = None,
770
+ position_ids: Optional[torch.LongTensor] = None,
771
+ past_key_value: Optional[Cache] = None,
772
+ output_attentions: Optional[bool] = False,
773
+ use_cache: Optional[bool] = False,
774
+ cache_position: Optional[torch.LongTensor] = None,
775
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
776
+ """
777
+ Args:
778
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
779
+ attention_mask (`torch.FloatTensor`, *optional*):
780
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
781
+ query_sequence_length, key_sequence_length)` if default attention is used.
782
+ output_attentions (`bool`, *optional*):
783
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
784
+ returned tensors for more detail.
785
+ use_cache (`bool`, *optional*):
786
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
787
+ (see `past_key_values`).
788
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
789
+ """
790
+ residual = hidden_states
791
+
792
+ hidden_states = self.input_layernorm(hidden_states)
793
+
794
+ # Self Attention
795
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
796
+ hidden_states=hidden_states,
797
+ attention_mask=attention_mask,
798
+ position_ids=position_ids,
799
+ past_key_value=past_key_value,
800
+ output_attentions=output_attentions,
801
+ use_cache=use_cache,
802
+ cache_position=cache_position,
803
+ )
804
+ hidden_states = residual + hidden_states
805
+
806
+ # Fully Connected
807
+ residual = hidden_states
808
+ hidden_states = self.post_attention_layernorm(hidden_states)
809
+ hidden_states = self.mlp(hidden_states)
810
+ hidden_states = residual + hidden_states
811
+
812
+ outputs = (hidden_states,)
813
+
814
+ if output_attentions:
815
+ outputs += (self_attn_weights,)
816
+
817
+ if use_cache:
818
+ outputs += (present_key_value,)
819
+
820
+ return outputs
821
+
822
+
823
+ LLAMA_START_DOCSTRING = r"""
824
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
825
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
826
+ etc.)
827
+
828
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
829
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
830
+ and behavior.
831
+
832
+ Parameters:
833
+ config ([`LlamaConfig`]):
834
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
835
+ load the weights associated with the model, only the configuration. Check out the
836
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
837
+ """
838
+
839
+
840
+ @add_start_docstrings(
841
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
842
+ LLAMA_START_DOCSTRING,
843
+ )
844
+ class LlamaPreTrainedModel(PreTrainedModel):
845
+ config_class = LlamaConfig
846
+ base_model_prefix = "model"
847
+ supports_gradient_checkpointing = True
848
+ _no_split_modules = ["LlamaDecoderLayer"]
849
+ _skip_keys_device_placement = ["past_key_values"]
850
+ _supports_flash_attn_2 = True
851
+ _supports_sdpa = True
852
+ _supports_cache_class = True
853
+ _supports_static_cache = True
854
+
855
+ def _init_weights(self, module):
856
+ std = self.config.initializer_range
857
+ if isinstance(module, nn.Linear):
858
+ module.weight.data.normal_(mean=0.0, std=std)
859
+ if module.bias is not None:
860
+ module.bias.data.zero_()
861
+ elif isinstance(module, nn.Embedding):
862
+ module.weight.data.normal_(mean=0.0, std=std)
863
+ if module.padding_idx is not None:
864
+ module.weight.data[module.padding_idx].zero_()
865
+
866
+
867
+ LLAMA_INPUTS_DOCSTRING = r"""
868
+ Args:
869
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
870
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
871
+ it.
872
+
873
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
874
+ [`PreTrainedTokenizer.__call__`] for details.
875
+
876
+ [What are input IDs?](../glossary#input-ids)
877
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
878
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
879
+
880
+ - 1 for tokens that are **not masked**,
881
+ - 0 for tokens that are **masked**.
882
+
883
+ [What are attention masks?](../glossary#attention-mask)
884
+
885
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
886
+ [`PreTrainedTokenizer.__call__`] for details.
887
+
888
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
889
+ `past_key_values`).
890
+
891
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
892
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
893
+ information on the default strategy.
894
+
895
+ - 1 indicates the head is **not masked**,
896
+ - 0 indicates the head is **masked**.
897
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
898
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
899
+ config.n_positions - 1]`.
900
+
901
+ [What are position IDs?](../glossary#position-ids)
902
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
903
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
904
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
905
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
906
+
907
+ Two formats are allowed:
908
+ - a [`~cache_utils.Cache`] instance;
909
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
910
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
911
+ cache format.
912
+
913
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
914
+ legacy cache format will be returned.
915
+
916
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
917
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
918
+ of shape `(batch_size, sequence_length)`.
919
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
920
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
921
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
922
+ model's internal embedding lookup matrix.
923
+ use_cache (`bool`, *optional*):
924
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
925
+ `past_key_values`).
926
+ output_attentions (`bool`, *optional*):
927
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
928
+ tensors for more detail.
929
+ output_hidden_states (`bool`, *optional*):
930
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
931
+ more detail.
932
+ return_dict (`bool`, *optional*):
933
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
934
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
935
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
936
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
937
+ the complete sequence length.
938
+ """
939
+
940
+
941
+ @add_start_docstrings(
942
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
943
+ LLAMA_START_DOCSTRING,
944
+ )
945
+ class LlamaModel(LlamaPreTrainedModel):
946
+ """
947
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
948
+
949
+ Args:
950
+ config: LlamaConfig
951
+ """
952
+
953
+ def __init__(self, config: LlamaConfig):
954
+ super().__init__(config)
955
+ self.padding_idx = config.pad_token_id
956
+ self.vocab_size = config.vocab_size
957
+
958
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
959
+ self.layers = nn.ModuleList(
960
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
961
+ )
962
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
963
+ self.gradient_checkpointing = False
964
+
965
+ # Initialize weights and apply final processing
966
+ self.post_init()
967
+
968
+ def get_input_embeddings(self):
969
+ return self.embed_tokens
970
+
971
+ def set_input_embeddings(self, value):
972
+ self.embed_tokens = value
973
+
974
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
975
+ def forward(
976
+ self,
977
+ input_ids: torch.LongTensor = None,
978
+ attention_mask: Optional[torch.Tensor] = None,
979
+ position_ids: Optional[torch.LongTensor] = None,
980
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
981
+ inputs_embeds: Optional[torch.FloatTensor] = None,
982
+ use_cache: Optional[bool] = None,
983
+ output_attentions: Optional[bool] = None,
984
+ output_hidden_states: Optional[bool] = None,
985
+ return_dict: Optional[bool] = None,
986
+ cache_position: Optional[torch.LongTensor] = None,
987
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
988
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
989
+ output_hidden_states = (
990
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
991
+ )
992
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
993
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
994
+
995
+ if (input_ids is None) ^ (inputs_embeds is not None):
996
+ raise ValueError(
997
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
998
+ )
999
+ elif input_ids is not None:
1000
+ batch_size, seq_length = input_ids.shape
1001
+ elif inputs_embeds is not None:
1002
+ batch_size, seq_length, _ = inputs_embeds.shape
1003
+ else:
1004
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1005
+
1006
+ if self.gradient_checkpointing and self.training and use_cache:
1007
+ logger.warning_once(
1008
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1009
+ )
1010
+ use_cache = False
1011
+
1012
+ past_key_values_length = 0
1013
+
1014
+ if inputs_embeds is None:
1015
+ inputs_embeds = self.embed_tokens(input_ids)
1016
+
1017
+ return_legacy_cache = False
1018
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
1019
+ return_legacy_cache = True
1020
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1021
+
1022
+ if use_cache:
1023
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1024
+
1025
+ if cache_position is None:
1026
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1027
+ cache_position = torch.arange(
1028
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1029
+ )
1030
+ if position_ids is None:
1031
+ position_ids = cache_position.unsqueeze(0)
1032
+
1033
+ # embed positions
1034
+ hidden_states = inputs_embeds
1035
+
1036
+ # decoder layers
1037
+ all_hidden_states = () if output_hidden_states else None
1038
+ all_self_attns = () if output_attentions else None
1039
+ next_decoder_cache = None
1040
+
1041
+ for layer_idx, decoder_layer in enumerate(self.layers):
1042
+ causal_mask = self._update_causal_mask(
1043
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions, sliding_window=self.config.sliding_windows[layer_idx]
1044
+ )
1045
+
1046
+ if output_hidden_states:
1047
+ all_hidden_states += (hidden_states,)
1048
+
1049
+ if self.gradient_checkpointing and self.training:
1050
+ layer_outputs = self._gradient_checkpointing_func(
1051
+ decoder_layer.__call__,
1052
+ hidden_states,
1053
+ causal_mask,
1054
+ position_ids,
1055
+ past_key_values,
1056
+ output_attentions,
1057
+ use_cache,
1058
+ cache_position,
1059
+ )
1060
+ else:
1061
+ layer_outputs = decoder_layer(
1062
+ hidden_states,
1063
+ attention_mask=causal_mask,
1064
+ position_ids=position_ids,
1065
+ past_key_value=past_key_values,
1066
+ output_attentions=output_attentions,
1067
+ use_cache=use_cache,
1068
+ cache_position=cache_position,
1069
+ )
1070
+
1071
+ hidden_states = layer_outputs[0]
1072
+
1073
+ if use_cache:
1074
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1075
+
1076
+ if output_attentions:
1077
+ all_self_attns += (layer_outputs[1],)
1078
+
1079
+ hidden_states = self.norm(hidden_states)
1080
+
1081
+ # add hidden states from the last decoder layer
1082
+ if output_hidden_states:
1083
+ all_hidden_states += (hidden_states,)
1084
+
1085
+ next_cache = next_decoder_cache if use_cache else None
1086
+ if return_legacy_cache:
1087
+ next_cache = next_cache.to_legacy_cache()
1088
+
1089
+ if not return_dict:
1090
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1091
+ return BaseModelOutputWithPast(
1092
+ last_hidden_state=hidden_states,
1093
+ past_key_values=next_cache,
1094
+ hidden_states=all_hidden_states,
1095
+ attentions=all_self_attns,
1096
+ )
1097
+
1098
+ def _update_causal_mask(
1099
+ self,
1100
+ attention_mask: torch.Tensor,
1101
+ input_tensor: torch.Tensor,
1102
+ cache_position: torch.Tensor,
1103
+ past_key_values: Cache,
1104
+ output_attentions: bool,
1105
+ sliding_window: Optional[int] = 0
1106
+ ):
1107
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1108
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1109
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1110
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1111
+
1112
+ if self.config._attn_implementation == "flash_attention_2":
1113
+ if attention_mask is not None and 0.0 in attention_mask:
1114
+ return attention_mask
1115
+ return None
1116
+
1117
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1118
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1119
+ # to infer the attention mask.
1120
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1121
+ using_static_cache = isinstance(past_key_values, StaticCache)
1122
+
1123
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1124
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1125
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1126
+ attention_mask,
1127
+ inputs_embeds=input_tensor,
1128
+ past_key_values_length=past_seen_tokens,
1129
+ sliding_window = sliding_window if sliding_window > 0 else None,
1130
+ is_training=self.training,
1131
+ ):
1132
+ return None
1133
+
1134
+ dtype, device = input_tensor.dtype, input_tensor.device
1135
+ min_dtype = torch.finfo(dtype).min
1136
+ sequence_length = input_tensor.shape[1]
1137
+ if using_static_cache:
1138
+ target_length = past_key_values.get_max_length()
1139
+ else:
1140
+ target_length = (
1141
+ attention_mask.shape[-1]
1142
+ if isinstance(attention_mask, torch.Tensor)
1143
+ else past_seen_tokens + sequence_length + 1
1144
+ )
1145
+
1146
+ if attention_mask is not None and attention_mask.dim() == 4:
1147
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1148
+ if attention_mask.max() != 0:
1149
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1150
+ causal_mask = attention_mask
1151
+ else:
1152
+ causal_mask = torch.full(
1153
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1154
+ )
1155
+ if sequence_length != 1:
1156
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1157
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1158
+ # add lower triangular sliding window mask if necessary
1159
+ if sliding_window > 0:
1160
+ diagonal = target_length - sliding_window - 1
1161
+
1162
+ context_mask = torch.tril(torch.ones_like(causal_mask, dtype=torch.bool), diagonal=diagonal)
1163
+ causal_mask.masked_fill_(context_mask, torch.finfo(dtype).min)
1164
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1165
+ if attention_mask is not None:
1166
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1167
+ mask_length = attention_mask.shape[-1]
1168
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1169
+ padding_mask = padding_mask == 0
1170
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1171
+ padding_mask, min_dtype
1172
+ )
1173
+ if (
1174
+ self.config._attn_implementation == "sdpa"
1175
+ and attention_mask is not None
1176
+ and attention_mask.device.type == "cuda"
1177
+ and not output_attentions
1178
+ ):
1179
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1180
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1181
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1182
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1183
+
1184
+ return causal_mask
1185
+
1186
+
1187
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1188
+ _tied_weights_keys = ["lm_head.weight"]
1189
+
1190
+ def __init__(self, config):
1191
+ super().__init__(config)
1192
+ self.model = LlamaModel(config)
1193
+ self.vocab_size = config.vocab_size
1194
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1195
+
1196
+ # Initialize weights and apply final processing
1197
+ self.post_init()
1198
+
1199
+ def get_input_embeddings(self):
1200
+ return self.model.embed_tokens
1201
+
1202
+ def set_input_embeddings(self, value):
1203
+ self.model.embed_tokens = value
1204
+
1205
+ def get_output_embeddings(self):
1206
+ return self.lm_head
1207
+
1208
+ def set_output_embeddings(self, new_embeddings):
1209
+ self.lm_head = new_embeddings
1210
+
1211
+ def set_decoder(self, decoder):
1212
+ self.model = decoder
1213
+
1214
+ def get_decoder(self):
1215
+ return self.model
1216
+
1217
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1218
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1219
+ def forward(
1220
+ self,
1221
+ input_ids: torch.LongTensor = None,
1222
+ attention_mask: Optional[torch.Tensor] = None,
1223
+ position_ids: Optional[torch.LongTensor] = None,
1224
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1225
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1226
+ labels: Optional[torch.LongTensor] = None,
1227
+ use_cache: Optional[bool] = None,
1228
+ output_attentions: Optional[bool] = None,
1229
+ output_hidden_states: Optional[bool] = None,
1230
+ return_dict: Optional[bool] = None,
1231
+ cache_position: Optional[torch.LongTensor] = None,
1232
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1233
+ r"""
1234
+ Args:
1235
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1236
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1237
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1238
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1239
+
1240
+ Returns:
1241
+
1242
+ Example:
1243
+
1244
+ ```python
1245
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1246
+
1247
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1248
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1249
+
1250
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1251
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1252
+
1253
+ >>> # Generate
1254
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1255
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1256
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1257
+ ```"""
1258
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1259
+ output_hidden_states = (
1260
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1261
+ )
1262
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1263
+
1264
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1265
+ outputs = self.model(
1266
+ input_ids=input_ids,
1267
+ attention_mask=attention_mask,
1268
+ position_ids=position_ids,
1269
+ past_key_values=past_key_values,
1270
+ inputs_embeds=inputs_embeds,
1271
+ use_cache=use_cache,
1272
+ output_attentions=output_attentions,
1273
+ output_hidden_states=output_hidden_states,
1274
+ return_dict=return_dict,
1275
+ cache_position=cache_position,
1276
+ )
1277
+
1278
+ hidden_states = outputs[0]
1279
+ if self.config.pretraining_tp > 1:
1280
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1281
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1282
+ logits = torch.cat(logits, dim=-1)
1283
+ else:
1284
+ logits = self.lm_head(hidden_states)
1285
+ logits = logits.float()
1286
+
1287
+ loss = None
1288
+ if labels is not None:
1289
+ # Shift so that tokens < n predict n
1290
+ shift_logits = logits[..., :-1, :].contiguous()
1291
+ shift_labels = labels[..., 1:].contiguous()
1292
+ # Flatten the tokens
1293
+ loss_fct = CrossEntropyLoss()
1294
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1295
+ shift_labels = shift_labels.view(-1)
1296
+ # Enable model parallelism
1297
+ shift_labels = shift_labels.to(shift_logits.device)
1298
+ loss = loss_fct(shift_logits, shift_labels)
1299
+
1300
+ if not return_dict:
1301
+ output = (logits,) + outputs[1:]
1302
+ return (loss,) + output if loss is not None else output
1303
+
1304
+ return CausalLMOutputWithPast(
1305
+ loss=loss,
1306
+ logits=logits,
1307
+ past_key_values=outputs.past_key_values,
1308
+ hidden_states=outputs.hidden_states,
1309
+ attentions=outputs.attentions,
1310
+ )
1311
+
1312
+ def prepare_inputs_for_generation(
1313
+ self,
1314
+ input_ids,
1315
+ past_key_values=None,
1316
+ attention_mask=None,
1317
+ inputs_embeds=None,
1318
+ cache_position=None,
1319
+ use_cache=True,
1320
+ **kwargs,
1321
+ ):
1322
+ past_length = 0
1323
+ if past_key_values is not None:
1324
+ if isinstance(past_key_values, Cache):
1325
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1326
+ max_cache_length = (
1327
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1328
+ if past_key_values.get_max_length() is not None
1329
+ else None
1330
+ )
1331
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1332
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1333
+ else:
1334
+ cache_length = past_length = past_key_values[0][0].shape[2]
1335
+ max_cache_length = None
1336
+
1337
+ # Keep only the unprocessed tokens:
1338
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1339
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1340
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1341
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1342
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1343
+ # input_ids based on the past_length.
1344
+ elif past_length < input_ids.shape[1]:
1345
+ input_ids = input_ids[:, past_length:]
1346
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1347
+
1348
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1349
+ if (
1350
+ max_cache_length is not None
1351
+ and attention_mask is not None
1352
+ and cache_length + input_ids.shape[1] > max_cache_length
1353
+ ):
1354
+ attention_mask = attention_mask[:, -max_cache_length:]
1355
+
1356
+ position_ids = kwargs.get("position_ids", None)
1357
+ if attention_mask is not None and position_ids is None:
1358
+ # create position_ids on the fly for batch generation
1359
+ position_ids = attention_mask.long().cumsum(-1) - 1
1360
+ position_ids.masked_fill_(attention_mask == 0, 1)
1361
+ if past_key_values:
1362
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1363
+
1364
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1365
+ if inputs_embeds is not None and past_key_values is None:
1366
+ model_inputs = {"inputs_embeds": inputs_embeds}
1367
+ else:
1368
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1369
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1370
+ # TODO: use `next_tokens` directly instead.
1371
+ model_inputs = {"input_ids": input_ids.contiguous()}
1372
+
1373
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1374
+ if cache_position is None:
1375
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1376
+ elif use_cache:
1377
+ cache_position = cache_position[-input_length:]
1378
+
1379
+ model_inputs.update(
1380
+ {
1381
+ "position_ids": position_ids,
1382
+ "cache_position": cache_position,
1383
+ "past_key_values": past_key_values,
1384
+ "use_cache": use_cache,
1385
+ "attention_mask": attention_mask,
1386
+ }
1387
+ )
1388
+ return model_inputs
1389
+
1390
+ @staticmethod
1391
+ def _reorder_cache(past_key_values, beam_idx):
1392
+ reordered_past = ()
1393
+ for layer_past in past_key_values:
1394
+ reordered_past += (
1395
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1396
+ )
1397
+ return reordered_past
1398
+
1399
+
1400
+ @add_start_docstrings(
1401
+ """
1402
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1403
+
1404
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1405
+ (e.g. GPT-2) do.
1406
+
1407
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1408
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1409
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1410
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1411
+ each row of the batch).
1412
+ """,
1413
+ LLAMA_START_DOCSTRING,
1414
+ )
1415
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1416
+ def __init__(self, config):
1417
+ super().__init__(config)
1418
+ self.num_labels = config.num_labels
1419
+ self.model = LlamaModel(config)
1420
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1421
+
1422
+ # Initialize weights and apply final processing
1423
+ self.post_init()
1424
+
1425
+ def get_input_embeddings(self):
1426
+ return self.model.embed_tokens
1427
+
1428
+ def set_input_embeddings(self, value):
1429
+ self.model.embed_tokens = value
1430
+
1431
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1432
+ def forward(
1433
+ self,
1434
+ input_ids: torch.LongTensor = None,
1435
+ attention_mask: Optional[torch.Tensor] = None,
1436
+ position_ids: Optional[torch.LongTensor] = None,
1437
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1438
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1439
+ labels: Optional[torch.LongTensor] = None,
1440
+ use_cache: Optional[bool] = None,
1441
+ output_attentions: Optional[bool] = None,
1442
+ output_hidden_states: Optional[bool] = None,
1443
+ return_dict: Optional[bool] = None,
1444
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1445
+ r"""
1446
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1447
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1448
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1449
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1450
+ """
1451
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1452
+
1453
+ transformer_outputs = self.model(
1454
+ input_ids,
1455
+ attention_mask=attention_mask,
1456
+ position_ids=position_ids,
1457
+ past_key_values=past_key_values,
1458
+ inputs_embeds=inputs_embeds,
1459
+ use_cache=use_cache,
1460
+ output_attentions=output_attentions,
1461
+ output_hidden_states=output_hidden_states,
1462
+ return_dict=return_dict,
1463
+ )
1464
+ hidden_states = transformer_outputs[0]
1465
+ logits = self.score(hidden_states)
1466
+
1467
+ if input_ids is not None:
1468
+ batch_size = input_ids.shape[0]
1469
+ else:
1470
+ batch_size = inputs_embeds.shape[0]
1471
+
1472
+ if self.config.pad_token_id is None and batch_size != 1:
1473
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1474
+ if self.config.pad_token_id is None:
1475
+ sequence_lengths = -1
1476
+ else:
1477
+ if input_ids is not None:
1478
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1479
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1480
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1481
+ sequence_lengths = sequence_lengths.to(logits.device)
1482
+ else:
1483
+ sequence_lengths = -1
1484
+
1485
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1486
+
1487
+ loss = None
1488
+ if labels is not None:
1489
+ labels = labels.to(logits.device)
1490
+ if self.config.problem_type is None:
1491
+ if self.num_labels == 1:
1492
+ self.config.problem_type = "regression"
1493
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1494
+ self.config.problem_type = "single_label_classification"
1495
+ else:
1496
+ self.config.problem_type = "multi_label_classification"
1497
+
1498
+ if self.config.problem_type == "regression":
1499
+ loss_fct = MSELoss()
1500
+ if self.num_labels == 1:
1501
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1502
+ else:
1503
+ loss = loss_fct(pooled_logits, labels)
1504
+ elif self.config.problem_type == "single_label_classification":
1505
+ loss_fct = CrossEntropyLoss()
1506
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1507
+ elif self.config.problem_type == "multi_label_classification":
1508
+ loss_fct = BCEWithLogitsLoss()
1509
+ loss = loss_fct(pooled_logits, labels)
1510
+ if not return_dict:
1511
+ output = (pooled_logits,) + transformer_outputs[1:]
1512
+ return ((loss,) + output) if loss is not None else output
1513
+
1514
+ return SequenceClassifierOutputWithPast(
1515
+ loss=loss,
1516
+ logits=pooled_logits,
1517
+ past_key_values=transformer_outputs.past_key_values,
1518
+ hidden_states=transformer_outputs.hidden_states,
1519
+ attentions=transformer_outputs.attentions,
1520
+ )
1521
+
1522
+
1523
+ @add_start_docstrings(
1524
+ """
1525
+ The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
1526
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1527
+ """,
1528
+ LLAMA_START_DOCSTRING,
1529
+ )
1530
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1531
+ base_model_prefix = "transformer"
1532
+
1533
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1534
+ def __init__(self, config):
1535
+ super().__init__(config)
1536
+ self.transformer = LlamaModel(config)
1537
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1538
+
1539
+ # Initialize weights and apply final processing
1540
+ self.post_init()
1541
+
1542
+ def get_input_embeddings(self):
1543
+ return self.transformer.embed_tokens
1544
+
1545
+ def set_input_embeddings(self, value):
1546
+ self.transformer.embed_tokens = value
1547
+
1548
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1549
+ def forward(
1550
+ self,
1551
+ input_ids: Optional[torch.LongTensor] = None,
1552
+ attention_mask: Optional[torch.FloatTensor] = None,
1553
+ position_ids: Optional[torch.LongTensor] = None,
1554
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1555
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1556
+ start_positions: Optional[torch.LongTensor] = None,
1557
+ end_positions: Optional[torch.LongTensor] = None,
1558
+ output_attentions: Optional[bool] = None,
1559
+ output_hidden_states: Optional[bool] = None,
1560
+ return_dict: Optional[bool] = None,
1561
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1562
+ r"""
1563
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1564
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1565
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1566
+ are not taken into account for computing the loss.
1567
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1568
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1569
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1570
+ are not taken into account for computing the loss.
1571
+ """
1572
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1573
+
1574
+ outputs = self.transformer(
1575
+ input_ids,
1576
+ attention_mask=attention_mask,
1577
+ position_ids=position_ids,
1578
+ past_key_values=past_key_values,
1579
+ inputs_embeds=inputs_embeds,
1580
+ output_attentions=output_attentions,
1581
+ output_hidden_states=output_hidden_states,
1582
+ return_dict=return_dict,
1583
+ )
1584
+
1585
+ sequence_output = outputs[0]
1586
+
1587
+ logits = self.qa_outputs(sequence_output)
1588
+ start_logits, end_logits = logits.split(1, dim=-1)
1589
+ start_logits = start_logits.squeeze(-1).contiguous()
1590
+ end_logits = end_logits.squeeze(-1).contiguous()
1591
+
1592
+ total_loss = None
1593
+ if start_positions is not None and end_positions is not None:
1594
+ # If we are on multi-GPU, split add a dimension
1595
+ if len(start_positions.size()) > 1:
1596
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1597
+ if len(end_positions.size()) > 1:
1598
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1599
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1600
+ ignored_index = start_logits.size(1)
1601
+ start_positions = start_positions.clamp(0, ignored_index)
1602
+ end_positions = end_positions.clamp(0, ignored_index)
1603
+
1604
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1605
+ start_loss = loss_fct(start_logits, start_positions)
1606
+ end_loss = loss_fct(end_logits, end_positions)
1607
+ total_loss = (start_loss + end_loss) / 2
1608
+
1609
+ if not return_dict:
1610
+ output = (start_logits, end_logits) + outputs[2:]
1611
+ return ((total_loss,) + output) if total_loss is not None else output
1612
+
1613
+ return QuestionAnsweringModelOutput(
1614
+ loss=total_loss,
1615
+ start_logits=start_logits,
1616
+ end_logits=end_logits,
1617
+ hidden_states=outputs.hidden_states,
1618
+ attentions=outputs.attentions,
1619
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2061 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "clean_up_tokenization_spaces": true,
2054
+ "eos_token": "<|end_of_text|>",
2055
+ "model_input_names": [
2056
+ "input_ids",
2057
+ "attention_mask"
2058
+ ],
2059
+ "model_max_length": 131072,
2060
+ "tokenizer_class": "PreTrainedTokenizerFast"
2061
+ }