metadata
library_name: transformers
license: apache-2.0
base_model: kykim0/pythia-1b-tulu-v2-mix
tags:
- generated_from_trainer
datasets:
- allenai/ultrafeedback_binarized_cleaned
metrics:
- accuracy
model-index:
- name: b32-lr1.41e-05-s0-e2-btbinf-seed42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: allenai/ultrafeedback_binarized_cleaned
type: allenai/ultrafeedback_binarized_cleaned
metrics:
- name: Accuracy
type: accuracy
value: 0.7427109974424553
b32-lr1.41e-05-s0-e2-btbinf-seed42
This model is a fine-tuned version of kykim0/pythia-1b-tulu-v2-mix on the allenai/ultrafeedback_binarized_cleaned dataset. It achieves the following results on the evaluation set:
- Loss: 0.5040
- Accuracy: 0.7458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6627 | 0.0527 | 100 | 0.6306 | 0.6675 |
0.5604 | 0.1055 | 200 | 0.5954 | 0.6890 |
0.5743 | 0.1582 | 300 | 0.5773 | 0.6880 |
0.573 | 0.2110 | 400 | 0.5408 | 0.7182 |
0.5644 | 0.2637 | 500 | 0.5285 | 0.7361 |
0.5482 | 0.3165 | 600 | 0.5251 | 0.7366 |
0.5673 | 0.3692 | 700 | 0.5267 | 0.7279 |
0.5701 | 0.4219 | 800 | 0.5123 | 0.7453 |
0.5199 | 0.4747 | 900 | 0.5148 | 0.7376 |
0.5525 | 0.5274 | 1000 | 0.5133 | 0.7494 |
0.5197 | 0.5802 | 1100 | 0.5085 | 0.7488 |
0.4977 | 0.6329 | 1200 | 0.5146 | 0.7412 |
0.492 | 0.6857 | 1300 | 0.5116 | 0.7417 |
0.5046 | 0.7384 | 1400 | 0.5069 | 0.7453 |
0.5476 | 0.7911 | 1500 | 0.5044 | 0.7478 |
0.5247 | 0.8439 | 1600 | 0.5038 | 0.7468 |
0.5591 | 0.8966 | 1700 | 0.5079 | 0.7453 |
0.5228 | 0.9494 | 1800 | 0.5040 | 0.7458 |
0.5336 | 1.0021 | 1900 | 0.5045 | 0.7488 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1