Initial commit
Browse files- README.md +6 -5
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -1
- a2c-AntBulletEnv-v0/data +54 -52
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +2 -2
- a2c-AntBulletEnv-v0/system_info.txt +7 -7
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -8,16 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: A2C
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 1772.97 +/- 413.64
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: AntBulletEnv-v0
|
20 |
type: AntBulletEnv-v0
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **A2C** Agent playing **AntBulletEnv-v0**
|
|
|
8 |
model-index:
|
9 |
- name: A2C
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: AntBulletEnv-v0
|
16 |
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1587.19 +/- 175.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **A2C** Agent playing **AntBulletEnv-v0**
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc7ef2d9f29cb3494058efef30d04816608e25163cf3df528328774da6ff1b7
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -1,27 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
-
":serialized:": "
|
25 |
"log_std_init": -2,
|
26 |
"ortho_init": false,
|
27 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
@@ -31,75 +32,76 @@
|
|
31 |
"weight_decay": 0
|
32 |
}
|
33 |
},
|
34 |
-
"observation_space": {
|
35 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
-
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
-
"dtype": "float32",
|
38 |
-
"_shape": [
|
39 |
-
28
|
40 |
-
],
|
41 |
-
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
-
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
-
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
-
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
-
"_np_random": null
|
46 |
-
},
|
47 |
-
"action_space": {
|
48 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
-
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
-
"dtype": "float32",
|
51 |
-
"_shape": [
|
52 |
-
8
|
53 |
-
],
|
54 |
-
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
-
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
-
"bounded_below": "[ True True True True True True True True]",
|
57 |
-
"bounded_above": "[ True True True True True True True True]",
|
58 |
-
"_np_random": null
|
59 |
-
},
|
60 |
-
"n_envs": 4,
|
61 |
"num_timesteps": 2000000,
|
62 |
"_total_timesteps": 2000000,
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
"learning_rate": 0.00096,
|
68 |
-
"tensorboard_log":
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
-
":serialized:": "
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
-
":serialized:": "
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
-
":serialized:": "
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
-
":serialized:": "
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
87 |
"sde_sample_freq": -1,
|
88 |
"_current_progress_remaining": 0.0,
|
|
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
-
":serialized:": "
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
95 |
-
":serialized:": "
|
96 |
},
|
97 |
-
"_n_updates":
|
98 |
"n_steps": 8,
|
99 |
"gamma": 0.99,
|
100 |
"gae_lambda": 0.9,
|
101 |
"ent_coef": 0.0,
|
102 |
"vf_coef": 0.4,
|
103 |
"max_grad_norm": 0.5,
|
104 |
-
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
}
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f92ce240160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92ce2401f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92ce240280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92ce240310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f92ce2403a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f92ce240430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92ce2404c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92ce240550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f92ce2405e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92ce240670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92ce240700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92ce240790>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f92ce23a680>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
"log_std_init": -2,
|
27 |
"ortho_init": false,
|
28 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"num_timesteps": 2000000,
|
36 |
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1683277052645830547,
|
41 |
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALuQjT+ZfCq+bfb3PipOuz/LSPa/cXlmvzFha79qw8a/ZnQTPVk56T/Ku+q+Dzc2P8aiQL/dVgjAbGFHPyyqHEDcefs+6jzWvzmfY78zsnm/H39pv/gZMDxqBuc/nt9Tvp9ZrL8DUY8+ofD+PiDbar9tDFBAIX8fP7fzOz8X3LW/TWZePwS/GD3wFKw+i35nP+bha75xIL26aFM1wFmC1rxYQSu+bd5EOgGZJkBKqNU8b4ehvvZaxrqFpDdAUHrnPE2Ptj8olxM83WFBwLUK37yfWay/D6RkwD+IAMAg22q/GhbGPj8fm7+Ki2u/ut1pP03Rkr+l6D/AU3pHv9BPKz+PD5U+8n9GwI28Mr9zoi6/z7Ctv6Upyr+WJOC8p8w6P5i0vT/1XBm/hHgDwPS3Mr8NqU2+Rs/KwIkUsD/DMg1An1msvwNRjz4/iADAINtqv/7nPb8vIZe/FmpYv4zCtL8uLKQ/Ub0pP7EJZr6cS50+vLJsP+F2x7+FT0q/2A9FP2J+Zj8XQQLAHYDJPv1fEb+507Q/5ugIvqQ3fr5OECO/A65xvYbyOsB5ajg+fhYOv+kfPj8DUY8+P4gAwBmGiz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnHCK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATruDPQAAAABW9f+/AAAAALEfaT0AAAAAbnvdPwAAAAD7pJ89AAAAACQ/4j8AAAAAWUDGPQAAAAC4G/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPkA5zwAAAAAJ/TovwAAAACErgM+AAAAAK6T5D8AAAAA2li3PQAAAAA5u/o/AAAAACI2mL0AAAAAam/svwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJr93bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICPzhA+AAAAABqC5L8AAAAAHTXuvQAAAADk5eA/AAAAAPeEJb0AAAAAfwH4PwAAAABMy0I8AAAAAMz7778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCF341AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsFwBvgAAAAAtzeS/AAAAAAMXR70AAAAA3onyPwAAAAAZ1+C9AAAAAA7t8z8AAAAA7hCYvQAAAAAjw+q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsvuV0Lc9KMAWyUTegDjAF0lEdAsJVUXtShrXV9lChoBkdAnTLUYj0L+mgHTegDaAhHQLCY6/JNj9Z1fZQoaAZHQJ2AgoAn2IxoB03oA2gIR0CwmiD1wo9cdX2UKGgGR0CdC0N7jT8YaAdN6ANoCEdAsJsrxLCemXV9lChoBkdAm1TgCnxaxGgHTegDaAhHQLCbwUTL4et1fZQoaAZHQJ1FB8Z1mrdoB03oA2gIR0CwoLi+g13udX2UKGgGR0Ca5RMpw0fpaAdN6ANoCEdAsKHm8J2MbXV9lChoBkdAnUx5f+jubGgHTegDaAhHQLCi0IGyHEd1fZQoaAZHQJzJaQNkOI9oB03oA2gIR0CwozkVBUrDdX2UKGgGR0CdUjFVDKHPaAdN6ANoCEdAsKbmp2ll9XV9lChoBkdAnNSzHn2ZiWgHTegDaAhHQLCoE8UmD151fZQoaAZHQJ32Tt1IRRNoB03oA2gIR0CwqQGYrrgPdX2UKGgGR0CcnojqfOD8aAdN6ANoCEdAsKltg2IfsHV9lChoBkdAnqaoO6NEPWgHTegDaAhHQLCuwJKraM91fZQoaAZHQJ6tOHARChNoB03oA2gIR0CwsArHdXT3dX2UKGgGR0CeH0WOIZZTaAdN6ANoCEdAsLD2b+cYqHV9lChoBkdAnWsNqgyuZGgHTegDaAhHQLCxXhA4XGh1fZQoaAZHQJtIO0E5hjRoB03oA2gIR0CwtPapDNQkdX2UKGgGR0Ccf171Iy0saAdN6ANoCEdAsLYkqaw2VHV9lChoBkdAmv1BW912aGgHTegDaAhHQLC3E127nPp1fZQoaAZHQJz7yJgsshBoB03oA2gIR0Cwt3upsGgSdX2UKGgGR0CafjkE9t/GaAdN6ANoCEdAsLwK86FM7HV9lChoBkdAmx5FTNt65WgHTegDaAhHQLC95rJr+Hd1fZQoaAZHQJqW1DMNc4ZoB03oA2gIR0CwvuXZ00WNdX2UKGgGR0CarBgkTpPiaAdN6ANoCEdAsL9KTjebeHV9lChoBkdAmE+oq5LAYmgHTegDaAhHQLDC16YVqN91fZQoaAZHQJlyq1qnFYNoB03oA2gIR0CwxAwgTyrgdX2UKGgGR0CZCkP4EfT1aAdN6ANoCEdAsMT74gzP8nV9lChoBkdAlQtaFh5PdmgHTegDaAhHQLDFZ8CgbqB1fZQoaAZHQJolThbW3BpoB03oA2gIR0CwyXOfZmI1dX2UKGgGR0CaN/5JK8L8aAdN6ANoCEdAsMs0pkPMCHV9lChoBkdAmgsam4y44WgHTegDaAhHQLDMocslLOB1fZQoaAZHQJfdbyiEg4hoB03oA2gIR0CwzTzuBtk4dX2UKGgGR0CXjXb/wRXfaAdN6ANoCEdAsNDVArxy4nV9lChoBkdAma2jin5zo2gHTegDaAhHQLDR+KtxMnJ1fZQoaAZHQJktfz/ZM+NoB03oA2gIR0Cw0uI6Kcd6dX2UKGgGR0CYfK+mWMS9aAdN6ANoCEdAsNNQY/FBIHV9lChoBkdAmk2GDxsl9mgHTegDaAhHQLDW4W6shgV1fZQoaAZHQJhq/XqZ+hJoB03oA2gIR0Cw2Hn1e0HAdX2UKGgGR0CZuhrdnCfpaAdN6ANoCEdAsNnb/BFd9nV9lChoBkdAm8L+PaL4vmgHTegDaAhHQLDafQO4G2V1fZQoaAZHQJrCSiUPhAJoB03oA2gIR0Cw3rU3n6l+dX2UKGgGR0CaZib4rSVoaAdN6ANoCEdAsN/oYXO4X3V9lChoBkdAmYpnWSU1RGgHTegDaAhHQLDg2wsGxD91fZQoaAZHQJmfFtbcGkhoB03oA2gIR0Cw4UJAQg9vdX2UKGgGR0CZoC/4ZdfLaAdN6ANoCEdAsOTpWxQizXV9lChoBkdAm8TP/vOQhmgHTegDaAhHQLDmESZSeiB1fZQoaAZHQJrHcOby6MBoB03oA2gIR0Cw51FLOAy3dX2UKGgGR0CYNbksSTQmaAdN6ANoCEdAsOfjrVvuPXV9lChoBkdAmO9YtDlYEGgHTegDaAhHQLDsqOnEVFh1fZQoaAZHQJw7ePGQ0XRoB03oA2gIR0Cw7eP8/D+BdX2UKGgGR0Ca8z0ALiMpaAdN6ANoCEdAsO7f2dupCXV9lChoBkdAnEvlQZXMhWgHTegDaAhHQLDvT/H5rQB1fZQoaAZHQJ7nKTHKfWdoB03oA2gIR0Cw8vD63y7PdX2UKGgGR0CeQmpuuRs/aAdN6ANoCEdAsPQkr/bTMXV9lChoBkdAnnJjLGJemmgHTegDaAhHQLD1FEwFkhB1fZQoaAZHQJ55fG+9Jz1oB03oA2gIR0Cw9ZkHdGiIdX2UKGgGR0Ceff2b5M11aAdN6ANoCEdAsPrIphF3IXV9lChoBkdAmjDKJdjXnWgHTegDaAhHQLD7/Dh99c91fZQoaAZHQKAAkt2cJ+loB03oA2gIR0Cw/OtNvfj0dX2UKGgGR0Cd7lRkmQbNaAdN6ANoCEdAsP1XhXKbKHV9lChoBkdAnXJSoS+QEWgHTegDaAhHQLEBCRISUTt1fZQoaAZHQJ3IbRhMJyBoB03oA2gIR0CxAkAV9F4LdX2UKGgGR0CeQiYRujynaAdN6ANoCEdAsQM7E87p3XV9lChoBkdAnGMLu6VdHGgHTegDaAhHQLEDp5hScb11fZQoaAZHQJtea53C9AZoB03oA2gIR0CxCMBqwhW6dX2UKGgGR0CZfN9QoCuEaAdN6ANoCEdAsQoyx8lXzXV9lChoBkdAll9xAv+OwWgHTegDaAhHQLELHz3AVO91fZQoaAZHQJoSpmDlHSZoB03oA2gIR0CxC4p53TuwdX2UKGgGR0CZTUOQyRCAaAdN6ANoCEdAsQ8lCjUNKHV9lChoBkdAndhC0fHPvGgHTegDaAhHQLEQVgL7XQN1fZQoaAZHQJca8WWQfZFoB03oA2gIR0CxEUiwW3z+dX2UKGgGR0Cb/+Riw0O3aAdN6ANoCEdAsRGyAjIJaHV9lChoBkdAmrzNvjwQUmgHTegDaAhHQLEWK7mdRSB1fZQoaAZHQJtvbp+tr9FoB03oA2gIR0CxGAPjXFtLdX2UKGgGR0CdepvUSZjQaAdN6ANoCEdAsRkXPX05EXV9lChoBkdAnSOzjFQ2uWgHTegDaAhHQLEZfc4YJmd1fZQoaAZHQI3BNyksSTRoB03oA2gIR0CxHS7rLQokdX2UKGgGR0CZRu66J66baAdN6ANoCEdAsR5jkLhJiHV9lChoBkdAmcw6BZpztGgHTegDaAhHQLEfWgsbvPV1fZQoaAZHQJiD8fhddE9oB03oA2gIR0CxH8bVvuPWdX2UKGgGR0CbAyFUQ04zaAdN6ANoCEdAsSP977bcoHV9lChoBkdAmIMJYLb5/WgHTegDaAhHQLElyyPdVNp1fZQoaAZHQJzTzu8brC5oB03oA2gIR0CxJ04DYAbRdX2UKGgGR0Cb1o3hGYrsaAdN6ANoCEdAsSfSTPjXF3V9lChoBkdAmtqnAuZkTmgHTegDaAhHQLEreXarWAh1fZQoaAZHQJmeH24/eLxoB03oA2gIR0CxLKnQyAQQdX2UKGgGR0CZem/OMVDbaAdN6ANoCEdAsS2b+6y0KXV9lChoBkdAmm+d4/u9e2gHTegDaAhHQLEuBkkrwvx1fZQoaAZHQJr/4nBtUGVoB03oA2gIR0CxMcbzGxUvdX2UKGgGR0CYPkwqiGnGaAdN6ANoCEdAsTOFpqREGHV9lChoBkdAmjI+9OARTWgHTegDaAhHQLE1AfA9FF51fZQoaAZHQJpbxuqFRHhoB03oA2gIR0CxNae/+Kj0dX2UKGgGR0CYyRHwPRReaAdN6ANoCEdAsTm0HB1s+HV9lChoBkdAm4QMLjPv8mgHTegDaAhHQLE69HgxagV1fZQoaAZHQJk1PXoTwlVoB03oA2gIR0CxO+IcBEKFdX2UKGgGR0CZOSJng5zYaAdN6ANoCEdAsTxQ5WBBiXV9lChoBkdAlduoxL0z02gHTegDaAhHQLE//lTm4iJ1fZQoaAZHQJnK900WM0hoB03oA2gIR0CxQYSk9ECvdX2UKGgGR0CY9IPLgXMyaAdN6ANoCEdAsULlRGc4HXVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 66072,
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
76 |
"ent_coef": 0.0,
|
77 |
"vf_coef": 0.4,
|
78 |
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac98dfd5fbe968204909bfc1bf783f69f4ccffc28e65ced90af4bd3248cdd426
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05a7ac26a917b4509ffd1565363e541a7658499d89357d9392cc8707ee18f5c8
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.
|
2 |
-
Python: 3.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch:
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e7c4a8290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7c4a8320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7c4a83b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7c4a8440>", "_build": "<function ActorCriticPolicy._build at 0x7f3e7c4a84d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e7c4a8560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7c4a85f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e7c4a8680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7c4a8710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7c4a87a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7c4a8830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e7c4ff0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662973719.2350998, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAABLYLP96jzT6lfAQ/sovCPwQZp79bQCe+490HvdaEnL9BqVY/E0FLvVCcjD+oeFe+X7+7vwwBuz41wiW+ScTjvt3hb799eB2/6wJnPxc+Fr4DyCC/3Q3tvur7hD+qyJG904dVPw67BT8rn+w+j9mev0EiCT+aZku/xRDXPjtnXT/qSnU9ehQbP6i7Ob71TEy/46xMP49Ek76c7TU/cRfQPuZYGb8CRrS/kFdUPhhZDsBi4S4/A7xrv9wuFb6LSxg/d/5nvxo5TzwfcxO+ng72v9OHVT8OuwU/K5/sPo/Znr8UABk+GSLIPsCwBT9JZfU/8+Gvv4E0rD/9e6I+zjowv4ONVj8rUxa9cfYJPwNcUL835G+/KhCGP26ZJL7sCJQ/eR9Qv2aNgj52dlk/zyAHv8iZGb+i7na/sPWqPoEuDT9HdZm/DrsFPyuf7D5qSE4/zbbuvaa6xj9SUFi/DgCpvxyhYkCN5cI/sBqeP2sWOD5EJN+/kIbPvusPdr8OGzw9ZzHavugW2D9SRn+/TtWPv77woT5QZM4/9E5pP68Abj5GbghAHLcLP3aQBL2CnsA9R3WZvw67BT8rn+w+akhOP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASADrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICU8gs+AAAAAMgq7L8AAAAA0l4GvgAAAADiD9o/AAAAAM7dBz4AAAAA6GrfPwAAAACtOeC9AAAAAAel9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmjpM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9tcRvgAAAAAuGvy/AAAAAHgR3b0AAAAAcALZPwAAAABrvo49AAAAAAJy7D8AAAAAWIuKPQAAAADs3+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxbZCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK/d170AAAAAVpTxvwAAAADPdnu9AAAAACWQ+T8AAAAAi1HQvAAAAADidNw/AAAAANZe2b0AAAAA4yjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJoEbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK/MM8AAAAAM6W7b8AAAAAxiwFvgAAAAA1KvI/AAAAAD8wDb0AAAAAWDbjPwAAAAAo18C9AAAAALXN/L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6rhvze41CMAWyUTegDjAF0lEdArk2bvqkdm3V9lChoBkdAk/PfMGHHm2gHTegDaAhHQK5Sd/WDpTx1fZQoaAZHQJRTbeANG3FoB03oA2gIR0CuVCd0ihWYdX2UKGgGR0CX2rcIqsltaAdN6ANoCEdArlaBsdkrgHV9lChoBkdAldVueFtbcGgHTegDaAhHQK5aKdbxEv11fZQoaAZHQJW9US00FbFoB03oA2gIR0CuXu2f029+dX2UKGgGR0CVFnfDk2gnaAdN6ANoCEdArmCnmPo3aXV9lChoBkdAnArwRXfZVWgHTegDaAhHQK5jBxZMcp91fZQoaAZHQJ45B5Qgs9VoB03oA2gIR0CuZtQUQCjldX2UKGgGR0CbpFbJwKjSaAdN6ANoCEdArmu6Fyq+8HV9lChoBkdAnBy3BciW3WgHTegDaAhHQK5tbfWtlqd1fZQoaAZHQJzow68xsVNoB03oA2gIR0Cub8qOtGNJdX2UKGgGR0CZPmpjc2zfaAdN6ANoCEdArnNr6tT1kHV9lChoBkdAkr+9+so2GmgHTegDaAhHQK54RaoMrmR1fZQoaAZHQJj/iPo3aSNoB03oA2gIR0Cuef4mb9ZSdX2UKGgGR0CbtvDKHO8kaAdN6ANoCEdArnxYuK4x13V9lChoBkdAmr+3Zf2K22gHTegDaAhHQK5//ronrpt1fZQoaAZHQJsAQujASFpoB03oA2gIR0CuhNHNPgvUdX2UKGgGR0CWWQ5cC5mRaAdN6ANoCEdAroaDN8ma6XV9lChoBkdAntHLgbZOBWgHTegDaAhHQK6I4uieumt1fZQoaAZHQJwOjq9oN/hoB03oA2gIR0CujJRIatLddX2UKGgGR0CaqLh8YyfuaAdN6ANoCEdArpF+weNkv3V9lChoBkdAmmAl7pmmL2gHTegDaAhHQK6TMFQEZBN1fZQoaAZHQJwWB3MY/FBoB03oA2gIR0CulZLD63y7dX2UKGgGR0Cb2KR2bG3naAdN6ANoCEdArpmPb7CSBHV9lChoBkdAoJg1kxyn1mgHTegDaAhHQK6ehnzQNTd1fZQoaAZHQJ8MkekpI+ZoB03oA2gIR0CuoD4MvyskdX2UKGgGR0Ce0AC/GlyjaAdN6ANoCEdArqLChlDneXV9lChoBkdAkNfn5zo2XWgHTegDaAhHQK6mivJRwZR1fZQoaAZHQJKBfDUExItoB03oA2gIR0Cuq168xsVMdX2UKGgGR0CWULC6pYLcaAdN6ANoCEdArq0RuAI6bXV9lChoBkdAl2Qh8c+7lWgHTegDaAhHQK6vdgBLf1p1fZQoaAZHQJ1rlB3Roh9oB03oA2gIR0CuszsPSUkfdX2UKGgGR0CXsYiGWUr1aAdN6ANoCEdArrgcm6XjVHV9lChoBkdAl4xrqIJqqWgHTegDaAhHQK65zZmqYJF1fZQoaAZHQJ20avOhTOxoB03oA2gIR0CuvDGtQsPKdX2UKGgGR0CaAbn6Eal2aAdN6ANoCEdArr/r2exwAHV9lChoBkdAn3vsnE2pAGgHTegDaAhHQK7EyeLehwl1fZQoaAZHQJm+sQlKK51oB03oA2gIR0Cuxox2B8QadX2UKGgGR0CemRS9/SYxaAdN6ANoCEdArskDiVB2OnV9lChoBkdAlo7vw/gR9WgHTegDaAhHQK7M3x82Ji11fZQoaAZHQJpbVAX2ugZoB03oA2gIR0Cu0d4p2ECedX2UKGgGR0CdX/uFpPAPaAdN6ANoCEdArtOgMpgCwXV9lChoBkdAnZDCFoL5RGgHTegDaAhHQK7WCu+yquN1fZQoaAZHQJsU2XE61b9oB03oA2gIR0Cu2bw9q1w6dX2UKGgGR0CfD7wF1SwXaAdN6ANoCEdArt6mTs6aLHV9lChoBkdAm10KQV9F4WgHTegDaAhHQK7gYblzU7V1fZQoaAZHQJDfL5Ec81ZoB03oA2gIR0Cu4sAXl8w6dX2UKGgGR0Cbe6pyZKFqaAdN6ANoCEdAruZy7qY7aXV9lChoBkdAlou7RKHwgGgHTegDaAhHQK7rRDD0lJJ1fZQoaAZHQJm200ZWJadoB03oA2gIR0Cu7PJr1uiwdX2UKGgGR0CXGfhuO0b+aAdN6ANoCEdAru9SUgSvknV9lChoBkdAll27x/d69mgHTegDaAhHQK7zAbR4QjF1fZQoaAZHQJhZYD9wWFhoB03oA2gIR0Cu99wh4dIYdX2UKGgGR0CWqy6tDD0laAdN6ANoCEdArvmVZPl+3HV9lChoBkdAl1J/SMLncWgHTegDaAhHQK775bNbC791fZQoaAZHQJaB2Tkhib5oB03oA2gIR0Cu/6IUzsQedX2UKGgGR0CZT7UPQOWjaAdN6ANoCEdArwSLEtNBW3V9lChoBkdAmoeoDTz/ZWgHTegDaAhHQK8GTVVghKV1fZQoaAZHQJkLJ/kNnXdoB03oA2gIR0CvCLIn0CiidX2UKGgGR0CcFF89fTkRaAdN6ANoCEdArwxvu5SWJXV9lChoBkdAnWutbcGke2gHTegDaAhHQK8RUClrM1V1fZQoaAZHQJzHYIRh+fBoB03oA2gIR0CvEwWxhUiqdX2UKGgGR0Cbo4lCkXUIaAdN6ANoCEdArxVh5AyEc3V9lChoBkdAmx69ucc2i2gHTegDaAhHQK8ZEoFV1fV1fZQoaAZHQJgpXryDqW1oB03oA2gIR0CvHikoF3Y+dX2UKGgGR0CWWTUVzp5eaAdN6ANoCEdArx/kFr2xp3V9lChoBkdAlrcWy5Zr6GgHTegDaAhHQK8iQhbGFSN1fZQoaAZHQJcBKalUIcBoB03oA2gIR0CvJe7hFVkudX2UKGgGR0CYSD8aXKKYaAdN6ANoCEdAryrCgwoLHHV9lChoBkdAkdfZWV/tpmgHTegDaAhHQK8sfSS/0ul1fZQoaAZHQJkhL+98JD5oB03oA2gIR0CvLuJrULDydX2UKGgGR0CW3wynDR+jaAdN6ANoCEdArzKycwxnF3V9lChoBkdAl5Un6qKgqWgHTegDaAhHQK83moYvWYp1fZQoaAZHQJdm+fK6nR9oB03oA2gIR0CvOVNliBoVdX2UKGgGR0CZXUyuZCv6aAdN6ANoCEdArzvL7qIJq3V9lChoBkdAmxVs495hSmgHTegDaAhHQK8/hm5lOGl1fZQoaAZHQJVYfbmEGqxoB03oA2gIR0CvRGudXko4dX2UKGgGR0CYnndtl7MQaAdN6ANoCEdAr0Ygm/nGKnV9lChoBkdAmPGqvq1PWWgHTegDaAhHQK9IgeQuEmJ1fZQoaAZHQIptAmNR3vBoB03oA2gIR0CvTDs6RyOrdX2UKGgGR0CTqOFINEw4aAdN6ANoCEdAr1ElFMIu5HV9lChoBkdAmNTZb+tKZmgHTegDaAhHQK9S4dXko4N1fZQoaAZHQJfAmNWEK3NoB03oA2gIR0CvVUkrPMSsdX2UKGgGR0CZZEpwS8J2aAdN6ANoCEdAr1kPe1rqMXV9lChoBkdAmDburZJ04mgHTegDaAhHQK9d5nCfpUx1fZQoaAZHQJmvTrkbPyFoB03oA2gIR0CvX542S+xodX2UKGgGR0CRwKpUgjhUaAdN6ANoCEdAr2H5qKxcFHV9lChoBkdAl7vxppN9IGgHTegDaAhHQK9ltRw6ySp1fZQoaAZHQJVzN37k4m1oB03oA2gIR0CvaryLyc0+dX2UKGgGR0CXjPMUh3aBaAdN6ANoCEdAr2x+zMRpUXV9lChoBkdAmlg2JJoTPGgHTegDaAhHQK9u7MA3kxR1fZQoaAZHQJkU3ozN2TxoB03oA2gIR0Cvcp6rvLHNdX2UKGgGR0CauW5tWMjvaAdN6ANoCEdAr3eDEvTPSnV9lChoBkdAnWyf9YOlPGgHTegDaAhHQK95QQiA2AJ1fZQoaAZHQJlnUR/ViF1oB03oA2gIR0Cve8QJPZZkdX2UKGgGR0CWZFkK/mDEaAdN6ANoCEdAr3+BSzgMt3V9lChoBkdAmUIscABDHGgHTegDaAhHQK+EiA08/2V1fZQoaAZHQJtwdxYJVsFoB03oA2gIR0Cvhkcc+7lJdX2UKGgGR0CbxH3Ytg8baAdN6ANoCEdAr4i2mzjWCnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92ce240160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92ce2401f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92ce240280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92ce240310>", "_build": "<function ActorCriticPolicy._build at 0x7f92ce2403a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f92ce240430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92ce2404c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92ce240550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92ce2405e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92ce240670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92ce240700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92ce240790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f92ce23a680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683277052645830547, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALuQjT+ZfCq+bfb3PipOuz/LSPa/cXlmvzFha79qw8a/ZnQTPVk56T/Ku+q+Dzc2P8aiQL/dVgjAbGFHPyyqHEDcefs+6jzWvzmfY78zsnm/H39pv/gZMDxqBuc/nt9Tvp9ZrL8DUY8+ofD+PiDbar9tDFBAIX8fP7fzOz8X3LW/TWZePwS/GD3wFKw+i35nP+bha75xIL26aFM1wFmC1rxYQSu+bd5EOgGZJkBKqNU8b4ehvvZaxrqFpDdAUHrnPE2Ptj8olxM83WFBwLUK37yfWay/D6RkwD+IAMAg22q/GhbGPj8fm7+Ki2u/ut1pP03Rkr+l6D/AU3pHv9BPKz+PD5U+8n9GwI28Mr9zoi6/z7Ctv6Upyr+WJOC8p8w6P5i0vT/1XBm/hHgDwPS3Mr8NqU2+Rs/KwIkUsD/DMg1An1msvwNRjz4/iADAINtqv/7nPb8vIZe/FmpYv4zCtL8uLKQ/Ub0pP7EJZr6cS50+vLJsP+F2x7+FT0q/2A9FP2J+Zj8XQQLAHYDJPv1fEb+507Q/5ugIvqQ3fr5OECO/A65xvYbyOsB5ajg+fhYOv+kfPj8DUY8+P4gAwBmGiz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnHCK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATruDPQAAAABW9f+/AAAAALEfaT0AAAAAbnvdPwAAAAD7pJ89AAAAACQ/4j8AAAAAWUDGPQAAAAC4G/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPkA5zwAAAAAJ/TovwAAAACErgM+AAAAAK6T5D8AAAAA2li3PQAAAAA5u/o/AAAAACI2mL0AAAAAam/svwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJr93bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICPzhA+AAAAABqC5L8AAAAAHTXuvQAAAADk5eA/AAAAAPeEJb0AAAAAfwH4PwAAAABMy0I8AAAAAMz7778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCF341AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsFwBvgAAAAAtzeS/AAAAAAMXR70AAAAA3onyPwAAAAAZ1+C9AAAAAA7t8z8AAAAA7hCYvQAAAAAjw+q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsvuV0Lc9KMAWyUTegDjAF0lEdAsJVUXtShrXV9lChoBkdAnTLUYj0L+mgHTegDaAhHQLCY6/JNj9Z1fZQoaAZHQJ2AgoAn2IxoB03oA2gIR0CwmiD1wo9cdX2UKGgGR0CdC0N7jT8YaAdN6ANoCEdAsJsrxLCemXV9lChoBkdAm1TgCnxaxGgHTegDaAhHQLCbwUTL4et1fZQoaAZHQJ1FB8Z1mrdoB03oA2gIR0CwoLi+g13udX2UKGgGR0Ca5RMpw0fpaAdN6ANoCEdAsKHm8J2MbXV9lChoBkdAnUx5f+jubGgHTegDaAhHQLCi0IGyHEd1fZQoaAZHQJzJaQNkOI9oB03oA2gIR0CwozkVBUrDdX2UKGgGR0CdUjFVDKHPaAdN6ANoCEdAsKbmp2ll9XV9lChoBkdAnNSzHn2ZiWgHTegDaAhHQLCoE8UmD151fZQoaAZHQJ32Tt1IRRNoB03oA2gIR0CwqQGYrrgPdX2UKGgGR0CcnojqfOD8aAdN6ANoCEdAsKltg2IfsHV9lChoBkdAnqaoO6NEPWgHTegDaAhHQLCuwJKraM91fZQoaAZHQJ6tOHARChNoB03oA2gIR0CwsArHdXT3dX2UKGgGR0CeH0WOIZZTaAdN6ANoCEdAsLD2b+cYqHV9lChoBkdAnWsNqgyuZGgHTegDaAhHQLCxXhA4XGh1fZQoaAZHQJtIO0E5hjRoB03oA2gIR0CwtPapDNQkdX2UKGgGR0Ccf171Iy0saAdN6ANoCEdAsLYkqaw2VHV9lChoBkdAmv1BW912aGgHTegDaAhHQLC3E127nPp1fZQoaAZHQJz7yJgsshBoB03oA2gIR0Cwt3upsGgSdX2UKGgGR0CafjkE9t/GaAdN6ANoCEdAsLwK86FM7HV9lChoBkdAmx5FTNt65WgHTegDaAhHQLC95rJr+Hd1fZQoaAZHQJqW1DMNc4ZoB03oA2gIR0CwvuXZ00WNdX2UKGgGR0CarBgkTpPiaAdN6ANoCEdAsL9KTjebeHV9lChoBkdAmE+oq5LAYmgHTegDaAhHQLDC16YVqN91fZQoaAZHQJlyq1qnFYNoB03oA2gIR0CwxAwgTyrgdX2UKGgGR0CZCkP4EfT1aAdN6ANoCEdAsMT74gzP8nV9lChoBkdAlQtaFh5PdmgHTegDaAhHQLDFZ8CgbqB1fZQoaAZHQJolThbW3BpoB03oA2gIR0CwyXOfZmI1dX2UKGgGR0CaN/5JK8L8aAdN6ANoCEdAsMs0pkPMCHV9lChoBkdAmgsam4y44WgHTegDaAhHQLDMocslLOB1fZQoaAZHQJfdbyiEg4hoB03oA2gIR0CwzTzuBtk4dX2UKGgGR0CXjXb/wRXfaAdN6ANoCEdAsNDVArxy4nV9lChoBkdAma2jin5zo2gHTegDaAhHQLDR+KtxMnJ1fZQoaAZHQJktfz/ZM+NoB03oA2gIR0Cw0uI6Kcd6dX2UKGgGR0CYfK+mWMS9aAdN6ANoCEdAsNNQY/FBIHV9lChoBkdAmk2GDxsl9mgHTegDaAhHQLDW4W6shgV1fZQoaAZHQJhq/XqZ+hJoB03oA2gIR0Cw2Hn1e0HAdX2UKGgGR0CZuhrdnCfpaAdN6ANoCEdAsNnb/BFd9nV9lChoBkdAm8L+PaL4vmgHTegDaAhHQLDafQO4G2V1fZQoaAZHQJrCSiUPhAJoB03oA2gIR0Cw3rU3n6l+dX2UKGgGR0CaZib4rSVoaAdN6ANoCEdAsN/oYXO4X3V9lChoBkdAmYpnWSU1RGgHTegDaAhHQLDg2wsGxD91fZQoaAZHQJmfFtbcGkhoB03oA2gIR0Cw4UJAQg9vdX2UKGgGR0CZoC/4ZdfLaAdN6ANoCEdAsOTpWxQizXV9lChoBkdAm8TP/vOQhmgHTegDaAhHQLDmESZSeiB1fZQoaAZHQJrHcOby6MBoB03oA2gIR0Cw51FLOAy3dX2UKGgGR0CYNbksSTQmaAdN6ANoCEdAsOfjrVvuPXV9lChoBkdAmO9YtDlYEGgHTegDaAhHQLDsqOnEVFh1fZQoaAZHQJw7ePGQ0XRoB03oA2gIR0Cw7eP8/D+BdX2UKGgGR0Ca8z0ALiMpaAdN6ANoCEdAsO7f2dupCXV9lChoBkdAnEvlQZXMhWgHTegDaAhHQLDvT/H5rQB1fZQoaAZHQJ7nKTHKfWdoB03oA2gIR0Cw8vD63y7PdX2UKGgGR0CeQmpuuRs/aAdN6ANoCEdAsPQkr/bTMXV9lChoBkdAnnJjLGJemmgHTegDaAhHQLD1FEwFkhB1fZQoaAZHQJ55fG+9Jz1oB03oA2gIR0Cw9ZkHdGiIdX2UKGgGR0Ceff2b5M11aAdN6ANoCEdAsPrIphF3IXV9lChoBkdAmjDKJdjXnWgHTegDaAhHQLD7/Dh99c91fZQoaAZHQKAAkt2cJ+loB03oA2gIR0Cw/OtNvfj0dX2UKGgGR0Cd7lRkmQbNaAdN6ANoCEdAsP1XhXKbKHV9lChoBkdAnXJSoS+QEWgHTegDaAhHQLEBCRISUTt1fZQoaAZHQJ3IbRhMJyBoB03oA2gIR0CxAkAV9F4LdX2UKGgGR0CeQiYRujynaAdN6ANoCEdAsQM7E87p3XV9lChoBkdAnGMLu6VdHGgHTegDaAhHQLEDp5hScb11fZQoaAZHQJtea53C9AZoB03oA2gIR0CxCMBqwhW6dX2UKGgGR0CZfN9QoCuEaAdN6ANoCEdAsQoyx8lXzXV9lChoBkdAll9xAv+OwWgHTegDaAhHQLELHz3AVO91fZQoaAZHQJoSpmDlHSZoB03oA2gIR0CxC4p53TuwdX2UKGgGR0CZTUOQyRCAaAdN6ANoCEdAsQ8lCjUNKHV9lChoBkdAndhC0fHPvGgHTegDaAhHQLEQVgL7XQN1fZQoaAZHQJca8WWQfZFoB03oA2gIR0CxEUiwW3z+dX2UKGgGR0Cb/+Riw0O3aAdN6ANoCEdAsRGyAjIJaHV9lChoBkdAmrzNvjwQUmgHTegDaAhHQLEWK7mdRSB1fZQoaAZHQJtvbp+tr9FoB03oA2gIR0CxGAPjXFtLdX2UKGgGR0CdepvUSZjQaAdN6ANoCEdAsRkXPX05EXV9lChoBkdAnSOzjFQ2uWgHTegDaAhHQLEZfc4YJmd1fZQoaAZHQI3BNyksSTRoB03oA2gIR0CxHS7rLQokdX2UKGgGR0CZRu66J66baAdN6ANoCEdAsR5jkLhJiHV9lChoBkdAmcw6BZpztGgHTegDaAhHQLEfWgsbvPV1fZQoaAZHQJiD8fhddE9oB03oA2gIR0CxH8bVvuPWdX2UKGgGR0CbAyFUQ04zaAdN6ANoCEdAsSP977bcoHV9lChoBkdAmIMJYLb5/WgHTegDaAhHQLElyyPdVNp1fZQoaAZHQJzTzu8brC5oB03oA2gIR0CxJ04DYAbRdX2UKGgGR0Cb1o3hGYrsaAdN6ANoCEdAsSfSTPjXF3V9lChoBkdAmtqnAuZkTmgHTegDaAhHQLEreXarWAh1fZQoaAZHQJmeH24/eLxoB03oA2gIR0CxLKnQyAQQdX2UKGgGR0CZem/OMVDbaAdN6ANoCEdAsS2b+6y0KXV9lChoBkdAmm+d4/u9e2gHTegDaAhHQLEuBkkrwvx1fZQoaAZHQJr/4nBtUGVoB03oA2gIR0CxMcbzGxUvdX2UKGgGR0CYPkwqiGnGaAdN6ANoCEdAsTOFpqREGHV9lChoBkdAmjI+9OARTWgHTegDaAhHQLE1AfA9FF51fZQoaAZHQJpbxuqFRHhoB03oA2gIR0CxNae/+Kj0dX2UKGgGR0CYyRHwPRReaAdN6ANoCEdAsTm0HB1s+HV9lChoBkdAm4QMLjPv8mgHTegDaAhHQLE69HgxagV1fZQoaAZHQJk1PXoTwlVoB03oA2gIR0CxO+IcBEKFdX2UKGgGR0CZOSJng5zYaAdN6ANoCEdAsTxQ5WBBiXV9lChoBkdAlduoxL0z02gHTegDaAhHQLE//lTm4iJ1fZQoaAZHQJnK900WM0hoB03oA2gIR0CxQYSk9ECvdX2UKGgGR0CY9IPLgXMyaAdN6ANoCEdAsULlRGc4HXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 66072, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c85b8c472486bf0440d6727be82713cee03527bb87222a43dde8579dd6cc487
|
3 |
+
size 1154543
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1587.1867127448786, "std_reward": 175.0033856229231, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-05T09:56:33.996438"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:343b5300065a637d8a886be0f4c533771e19d7e74145d6d87e749e878abe2ab9
|
3 |
+
size 2176
|