Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1772.97 +/- 413.64
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f605c0ee4483d45664d6cc4ef39fa79f37ee47f52e32eb42263a03a9b3d33485
|
3 |
+
size 129194
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e7c4a8290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7c4a8320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7c4a83b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7c4a8440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3e7c4a84d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3e7c4a8560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7c4a85f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3e7c4a8680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7c4a8710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7c4a87a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7c4a8830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3e7c4ff0c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1662973719.2350998,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAABLYLP96jzT6lfAQ/sovCPwQZp79bQCe+490HvdaEnL9BqVY/E0FLvVCcjD+oeFe+X7+7vwwBuz41wiW+ScTjvt3hb799eB2/6wJnPxc+Fr4DyCC/3Q3tvur7hD+qyJG904dVPw67BT8rn+w+j9mev0EiCT+aZku/xRDXPjtnXT/qSnU9ehQbP6i7Ob71TEy/46xMP49Ek76c7TU/cRfQPuZYGb8CRrS/kFdUPhhZDsBi4S4/A7xrv9wuFb6LSxg/d/5nvxo5TzwfcxO+ng72v9OHVT8OuwU/K5/sPo/Znr8UABk+GSLIPsCwBT9JZfU/8+Gvv4E0rD/9e6I+zjowv4ONVj8rUxa9cfYJPwNcUL835G+/KhCGP26ZJL7sCJQ/eR9Qv2aNgj52dlk/zyAHv8iZGb+i7na/sPWqPoEuDT9HdZm/DrsFPyuf7D5qSE4/zbbuvaa6xj9SUFi/DgCpvxyhYkCN5cI/sBqeP2sWOD5EJN+/kIbPvusPdr8OGzw9ZzHavugW2D9SRn+/TtWPv77woT5QZM4/9E5pP68Abj5GbghAHLcLP3aQBL2CnsA9R3WZvw67BT8rn+w+akhOP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASADrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICU8gs+AAAAAMgq7L8AAAAA0l4GvgAAAADiD9o/AAAAAM7dBz4AAAAA6GrfPwAAAACtOeC9AAAAAAel9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmjpM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9tcRvgAAAAAuGvy/AAAAAHgR3b0AAAAAcALZPwAAAABrvo49AAAAAAJy7D8AAAAAWIuKPQAAAADs3+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxbZCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK/d170AAAAAVpTxvwAAAADPdnu9AAAAACWQ+T8AAAAAi1HQvAAAAADidNw/AAAAANZe2b0AAAAA4yjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJoEbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK/MM8AAAAAM6W7b8AAAAAxiwFvgAAAAA1KvI/AAAAAD8wDb0AAAAAWDbjPwAAAAAo18C9AAAAALXN/L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6rhvze41CMAWyUTegDjAF0lEdArk2bvqkdm3V9lChoBkdAk/PfMGHHm2gHTegDaAhHQK5Sd/WDpTx1fZQoaAZHQJRTbeANG3FoB03oA2gIR0CuVCd0ihWYdX2UKGgGR0CX2rcIqsltaAdN6ANoCEdArlaBsdkrgHV9lChoBkdAldVueFtbcGgHTegDaAhHQK5aKdbxEv11fZQoaAZHQJW9US00FbFoB03oA2gIR0CuXu2f029+dX2UKGgGR0CVFnfDk2gnaAdN6ANoCEdArmCnmPo3aXV9lChoBkdAnArwRXfZVWgHTegDaAhHQK5jBxZMcp91fZQoaAZHQJ45B5Qgs9VoB03oA2gIR0CuZtQUQCjldX2UKGgGR0CbpFbJwKjSaAdN6ANoCEdArmu6Fyq+8HV9lChoBkdAnBy3BciW3WgHTegDaAhHQK5tbfWtlqd1fZQoaAZHQJzow68xsVNoB03oA2gIR0Cub8qOtGNJdX2UKGgGR0CZPmpjc2zfaAdN6ANoCEdArnNr6tT1kHV9lChoBkdAkr+9+so2GmgHTegDaAhHQK54RaoMrmR1fZQoaAZHQJj/iPo3aSNoB03oA2gIR0Cuef4mb9ZSdX2UKGgGR0CbtvDKHO8kaAdN6ANoCEdArnxYuK4x13V9lChoBkdAmr+3Zf2K22gHTegDaAhHQK5//ronrpt1fZQoaAZHQJsAQujASFpoB03oA2gIR0CuhNHNPgvUdX2UKGgGR0CWWQ5cC5mRaAdN6ANoCEdAroaDN8ma6XV9lChoBkdAntHLgbZOBWgHTegDaAhHQK6I4uieumt1fZQoaAZHQJwOjq9oN/hoB03oA2gIR0CujJRIatLddX2UKGgGR0CaqLh8YyfuaAdN6ANoCEdArpF+weNkv3V9lChoBkdAmmAl7pmmL2gHTegDaAhHQK6TMFQEZBN1fZQoaAZHQJwWB3MY/FBoB03oA2gIR0CulZLD63y7dX2UKGgGR0Cb2KR2bG3naAdN6ANoCEdArpmPb7CSBHV9lChoBkdAoJg1kxyn1mgHTegDaAhHQK6ehnzQNTd1fZQoaAZHQJ8MkekpI+ZoB03oA2gIR0CuoD4MvyskdX2UKGgGR0Ce0AC/GlyjaAdN6ANoCEdArqLChlDneXV9lChoBkdAkNfn5zo2XWgHTegDaAhHQK6mivJRwZR1fZQoaAZHQJKBfDUExItoB03oA2gIR0Cuq168xsVMdX2UKGgGR0CWULC6pYLcaAdN6ANoCEdArq0RuAI6bXV9lChoBkdAl2Qh8c+7lWgHTegDaAhHQK6vdgBLf1p1fZQoaAZHQJ1rlB3Roh9oB03oA2gIR0CuszsPSUkfdX2UKGgGR0CXsYiGWUr1aAdN6ANoCEdArrgcm6XjVHV9lChoBkdAl4xrqIJqqWgHTegDaAhHQK65zZmqYJF1fZQoaAZHQJ20avOhTOxoB03oA2gIR0CuvDGtQsPKdX2UKGgGR0CaAbn6Eal2aAdN6ANoCEdArr/r2exwAHV9lChoBkdAn3vsnE2pAGgHTegDaAhHQK7EyeLehwl1fZQoaAZHQJm+sQlKK51oB03oA2gIR0Cuxox2B8QadX2UKGgGR0CemRS9/SYxaAdN6ANoCEdArskDiVB2OnV9lChoBkdAlo7vw/gR9WgHTegDaAhHQK7M3x82Ji11fZQoaAZHQJpbVAX2ugZoB03oA2gIR0Cu0d4p2ECedX2UKGgGR0CdX/uFpPAPaAdN6ANoCEdArtOgMpgCwXV9lChoBkdAnZDCFoL5RGgHTegDaAhHQK7WCu+yquN1fZQoaAZHQJsU2XE61b9oB03oA2gIR0Cu2bw9q1w6dX2UKGgGR0CfD7wF1SwXaAdN6ANoCEdArt6mTs6aLHV9lChoBkdAm10KQV9F4WgHTegDaAhHQK7gYblzU7V1fZQoaAZHQJDfL5Ec81ZoB03oA2gIR0Cu4sAXl8w6dX2UKGgGR0Cbe6pyZKFqaAdN6ANoCEdAruZy7qY7aXV9lChoBkdAlou7RKHwgGgHTegDaAhHQK7rRDD0lJJ1fZQoaAZHQJm200ZWJadoB03oA2gIR0Cu7PJr1uiwdX2UKGgGR0CXGfhuO0b+aAdN6ANoCEdAru9SUgSvknV9lChoBkdAll27x/d69mgHTegDaAhHQK7zAbR4QjF1fZQoaAZHQJhZYD9wWFhoB03oA2gIR0Cu99wh4dIYdX2UKGgGR0CWqy6tDD0laAdN6ANoCEdArvmVZPl+3HV9lChoBkdAl1J/SMLncWgHTegDaAhHQK775bNbC791fZQoaAZHQJaB2Tkhib5oB03oA2gIR0Cu/6IUzsQedX2UKGgGR0CZT7UPQOWjaAdN6ANoCEdArwSLEtNBW3V9lChoBkdAmoeoDTz/ZWgHTegDaAhHQK8GTVVghKV1fZQoaAZHQJkLJ/kNnXdoB03oA2gIR0CvCLIn0CiidX2UKGgGR0CcFF89fTkRaAdN6ANoCEdArwxvu5SWJXV9lChoBkdAnWutbcGke2gHTegDaAhHQK8RUClrM1V1fZQoaAZHQJzHYIRh+fBoB03oA2gIR0CvEwWxhUiqdX2UKGgGR0Cbo4lCkXUIaAdN6ANoCEdArxVh5AyEc3V9lChoBkdAmx69ucc2i2gHTegDaAhHQK8ZEoFV1fV1fZQoaAZHQJgpXryDqW1oB03oA2gIR0CvHikoF3Y+dX2UKGgGR0CWWTUVzp5eaAdN6ANoCEdArx/kFr2xp3V9lChoBkdAlrcWy5Zr6GgHTegDaAhHQK8iQhbGFSN1fZQoaAZHQJcBKalUIcBoB03oA2gIR0CvJe7hFVkudX2UKGgGR0CYSD8aXKKYaAdN6ANoCEdAryrCgwoLHHV9lChoBkdAkdfZWV/tpmgHTegDaAhHQK8sfSS/0ul1fZQoaAZHQJkhL+98JD5oB03oA2gIR0CvLuJrULDydX2UKGgGR0CW3wynDR+jaAdN6ANoCEdArzKycwxnF3V9lChoBkdAl5Un6qKgqWgHTegDaAhHQK83moYvWYp1fZQoaAZHQJdm+fK6nR9oB03oA2gIR0CvOVNliBoVdX2UKGgGR0CZXUyuZCv6aAdN6ANoCEdArzvL7qIJq3V9lChoBkdAmxVs495hSmgHTegDaAhHQK8/hm5lOGl1fZQoaAZHQJVYfbmEGqxoB03oA2gIR0CvRGudXko4dX2UKGgGR0CYnndtl7MQaAdN6ANoCEdAr0Ygm/nGKnV9lChoBkdAmPGqvq1PWWgHTegDaAhHQK9IgeQuEmJ1fZQoaAZHQIptAmNR3vBoB03oA2gIR0CvTDs6RyOrdX2UKGgGR0CTqOFINEw4aAdN6ANoCEdAr1ElFMIu5HV9lChoBkdAmNTZb+tKZmgHTegDaAhHQK9S4dXko4N1fZQoaAZHQJfAmNWEK3NoB03oA2gIR0CvVUkrPMSsdX2UKGgGR0CZZEpwS8J2aAdN6ANoCEdAr1kPe1rqMXV9lChoBkdAmDburZJ04mgHTegDaAhHQK9d5nCfpUx1fZQoaAZHQJmvTrkbPyFoB03oA2gIR0CvX542S+xodX2UKGgGR0CRwKpUgjhUaAdN6ANoCEdAr2H5qKxcFHV9lChoBkdAl7vxppN9IGgHTegDaAhHQK9ltRw6ySp1fZQoaAZHQJVzN37k4m1oB03oA2gIR0CvaryLyc0+dX2UKGgGR0CXjPMUh3aBaAdN6ANoCEdAr2x+zMRpUXV9lChoBkdAmlg2JJoTPGgHTegDaAhHQK9u7MA3kxR1fZQoaAZHQJkU3ozN2TxoB03oA2gIR0Cvcp6rvLHNdX2UKGgGR0CauW5tWMjvaAdN6ANoCEdAr3eDEvTPSnV9lChoBkdAnWyf9YOlPGgHTegDaAhHQK95QQiA2AJ1fZQoaAZHQJlnUR/ViF1oB03oA2gIR0Cve8QJPZZkdX2UKGgGR0CWZFkK/mDEaAdN6ANoCEdAr3+BSzgMt3V9lChoBkdAmUIscABDHGgHTegDaAhHQK+EiA08/2V1fZQoaAZHQJtwdxYJVsFoB03oA2gIR0Cvhkcc+7lJdX2UKGgGR0CbxH3Ytg8baAdN6ANoCEdAr4i2mzjWCnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c052ee0cdb116695f3bc46d5a233fe5fae2792e3790a0e8c9ceeab5cc043b198
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:319708d4951d32a004baacc46a812dc478e039c20d27ea0b12eb093e5010e8ea
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e7c4a8290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7c4a8320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7c4a83b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7c4a8440>", "_build": "<function ActorCriticPolicy._build at 0x7f3e7c4a84d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e7c4a8560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7c4a85f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e7c4a8680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7c4a8710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7c4a87a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7c4a8830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e7c4ff0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662973719.2350998, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAABLYLP96jzT6lfAQ/sovCPwQZp79bQCe+490HvdaEnL9BqVY/E0FLvVCcjD+oeFe+X7+7vwwBuz41wiW+ScTjvt3hb799eB2/6wJnPxc+Fr4DyCC/3Q3tvur7hD+qyJG904dVPw67BT8rn+w+j9mev0EiCT+aZku/xRDXPjtnXT/qSnU9ehQbP6i7Ob71TEy/46xMP49Ek76c7TU/cRfQPuZYGb8CRrS/kFdUPhhZDsBi4S4/A7xrv9wuFb6LSxg/d/5nvxo5TzwfcxO+ng72v9OHVT8OuwU/K5/sPo/Znr8UABk+GSLIPsCwBT9JZfU/8+Gvv4E0rD/9e6I+zjowv4ONVj8rUxa9cfYJPwNcUL835G+/KhCGP26ZJL7sCJQ/eR9Qv2aNgj52dlk/zyAHv8iZGb+i7na/sPWqPoEuDT9HdZm/DrsFPyuf7D5qSE4/zbbuvaa6xj9SUFi/DgCpvxyhYkCN5cI/sBqeP2sWOD5EJN+/kIbPvusPdr8OGzw9ZzHavugW2D9SRn+/TtWPv77woT5QZM4/9E5pP68Abj5GbghAHLcLP3aQBL2CnsA9R3WZvw67BT8rn+w+akhOP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASADrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICU8gs+AAAAAMgq7L8AAAAA0l4GvgAAAADiD9o/AAAAAM7dBz4AAAAA6GrfPwAAAACtOeC9AAAAAAel9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmjpM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9tcRvgAAAAAuGvy/AAAAAHgR3b0AAAAAcALZPwAAAABrvo49AAAAAAJy7D8AAAAAWIuKPQAAAADs3+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxbZCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK/d170AAAAAVpTxvwAAAADPdnu9AAAAACWQ+T8AAAAAi1HQvAAAAADidNw/AAAAANZe2b0AAAAA4yjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJoEbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK/MM8AAAAAM6W7b8AAAAAxiwFvgAAAAA1KvI/AAAAAD8wDb0AAAAAWDbjPwAAAAAo18C9AAAAALXN/L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6rhvze41CMAWyUTegDjAF0lEdArk2bvqkdm3V9lChoBkdAk/PfMGHHm2gHTegDaAhHQK5Sd/WDpTx1fZQoaAZHQJRTbeANG3FoB03oA2gIR0CuVCd0ihWYdX2UKGgGR0CX2rcIqsltaAdN6ANoCEdArlaBsdkrgHV9lChoBkdAldVueFtbcGgHTegDaAhHQK5aKdbxEv11fZQoaAZHQJW9US00FbFoB03oA2gIR0CuXu2f029+dX2UKGgGR0CVFnfDk2gnaAdN6ANoCEdArmCnmPo3aXV9lChoBkdAnArwRXfZVWgHTegDaAhHQK5jBxZMcp91fZQoaAZHQJ45B5Qgs9VoB03oA2gIR0CuZtQUQCjldX2UKGgGR0CbpFbJwKjSaAdN6ANoCEdArmu6Fyq+8HV9lChoBkdAnBy3BciW3WgHTegDaAhHQK5tbfWtlqd1fZQoaAZHQJzow68xsVNoB03oA2gIR0Cub8qOtGNJdX2UKGgGR0CZPmpjc2zfaAdN6ANoCEdArnNr6tT1kHV9lChoBkdAkr+9+so2GmgHTegDaAhHQK54RaoMrmR1fZQoaAZHQJj/iPo3aSNoB03oA2gIR0Cuef4mb9ZSdX2UKGgGR0CbtvDKHO8kaAdN6ANoCEdArnxYuK4x13V9lChoBkdAmr+3Zf2K22gHTegDaAhHQK5//ronrpt1fZQoaAZHQJsAQujASFpoB03oA2gIR0CuhNHNPgvUdX2UKGgGR0CWWQ5cC5mRaAdN6ANoCEdAroaDN8ma6XV9lChoBkdAntHLgbZOBWgHTegDaAhHQK6I4uieumt1fZQoaAZHQJwOjq9oN/hoB03oA2gIR0CujJRIatLddX2UKGgGR0CaqLh8YyfuaAdN6ANoCEdArpF+weNkv3V9lChoBkdAmmAl7pmmL2gHTegDaAhHQK6TMFQEZBN1fZQoaAZHQJwWB3MY/FBoB03oA2gIR0CulZLD63y7dX2UKGgGR0Cb2KR2bG3naAdN6ANoCEdArpmPb7CSBHV9lChoBkdAoJg1kxyn1mgHTegDaAhHQK6ehnzQNTd1fZQoaAZHQJ8MkekpI+ZoB03oA2gIR0CuoD4MvyskdX2UKGgGR0Ce0AC/GlyjaAdN6ANoCEdArqLChlDneXV9lChoBkdAkNfn5zo2XWgHTegDaAhHQK6mivJRwZR1fZQoaAZHQJKBfDUExItoB03oA2gIR0Cuq168xsVMdX2UKGgGR0CWULC6pYLcaAdN6ANoCEdArq0RuAI6bXV9lChoBkdAl2Qh8c+7lWgHTegDaAhHQK6vdgBLf1p1fZQoaAZHQJ1rlB3Roh9oB03oA2gIR0CuszsPSUkfdX2UKGgGR0CXsYiGWUr1aAdN6ANoCEdArrgcm6XjVHV9lChoBkdAl4xrqIJqqWgHTegDaAhHQK65zZmqYJF1fZQoaAZHQJ20avOhTOxoB03oA2gIR0CuvDGtQsPKdX2UKGgGR0CaAbn6Eal2aAdN6ANoCEdArr/r2exwAHV9lChoBkdAn3vsnE2pAGgHTegDaAhHQK7EyeLehwl1fZQoaAZHQJm+sQlKK51oB03oA2gIR0Cuxox2B8QadX2UKGgGR0CemRS9/SYxaAdN6ANoCEdArskDiVB2OnV9lChoBkdAlo7vw/gR9WgHTegDaAhHQK7M3x82Ji11fZQoaAZHQJpbVAX2ugZoB03oA2gIR0Cu0d4p2ECedX2UKGgGR0CdX/uFpPAPaAdN6ANoCEdArtOgMpgCwXV9lChoBkdAnZDCFoL5RGgHTegDaAhHQK7WCu+yquN1fZQoaAZHQJsU2XE61b9oB03oA2gIR0Cu2bw9q1w6dX2UKGgGR0CfD7wF1SwXaAdN6ANoCEdArt6mTs6aLHV9lChoBkdAm10KQV9F4WgHTegDaAhHQK7gYblzU7V1fZQoaAZHQJDfL5Ec81ZoB03oA2gIR0Cu4sAXl8w6dX2UKGgGR0Cbe6pyZKFqaAdN6ANoCEdAruZy7qY7aXV9lChoBkdAlou7RKHwgGgHTegDaAhHQK7rRDD0lJJ1fZQoaAZHQJm200ZWJadoB03oA2gIR0Cu7PJr1uiwdX2UKGgGR0CXGfhuO0b+aAdN6ANoCEdAru9SUgSvknV9lChoBkdAll27x/d69mgHTegDaAhHQK7zAbR4QjF1fZQoaAZHQJhZYD9wWFhoB03oA2gIR0Cu99wh4dIYdX2UKGgGR0CWqy6tDD0laAdN6ANoCEdArvmVZPl+3HV9lChoBkdAl1J/SMLncWgHTegDaAhHQK775bNbC791fZQoaAZHQJaB2Tkhib5oB03oA2gIR0Cu/6IUzsQedX2UKGgGR0CZT7UPQOWjaAdN6ANoCEdArwSLEtNBW3V9lChoBkdAmoeoDTz/ZWgHTegDaAhHQK8GTVVghKV1fZQoaAZHQJkLJ/kNnXdoB03oA2gIR0CvCLIn0CiidX2UKGgGR0CcFF89fTkRaAdN6ANoCEdArwxvu5SWJXV9lChoBkdAnWutbcGke2gHTegDaAhHQK8RUClrM1V1fZQoaAZHQJzHYIRh+fBoB03oA2gIR0CvEwWxhUiqdX2UKGgGR0Cbo4lCkXUIaAdN6ANoCEdArxVh5AyEc3V9lChoBkdAmx69ucc2i2gHTegDaAhHQK8ZEoFV1fV1fZQoaAZHQJgpXryDqW1oB03oA2gIR0CvHikoF3Y+dX2UKGgGR0CWWTUVzp5eaAdN6ANoCEdArx/kFr2xp3V9lChoBkdAlrcWy5Zr6GgHTegDaAhHQK8iQhbGFSN1fZQoaAZHQJcBKalUIcBoB03oA2gIR0CvJe7hFVkudX2UKGgGR0CYSD8aXKKYaAdN6ANoCEdAryrCgwoLHHV9lChoBkdAkdfZWV/tpmgHTegDaAhHQK8sfSS/0ul1fZQoaAZHQJkhL+98JD5oB03oA2gIR0CvLuJrULDydX2UKGgGR0CW3wynDR+jaAdN6ANoCEdArzKycwxnF3V9lChoBkdAl5Un6qKgqWgHTegDaAhHQK83moYvWYp1fZQoaAZHQJdm+fK6nR9oB03oA2gIR0CvOVNliBoVdX2UKGgGR0CZXUyuZCv6aAdN6ANoCEdArzvL7qIJq3V9lChoBkdAmxVs495hSmgHTegDaAhHQK8/hm5lOGl1fZQoaAZHQJVYfbmEGqxoB03oA2gIR0CvRGudXko4dX2UKGgGR0CYnndtl7MQaAdN6ANoCEdAr0Ygm/nGKnV9lChoBkdAmPGqvq1PWWgHTegDaAhHQK9IgeQuEmJ1fZQoaAZHQIptAmNR3vBoB03oA2gIR0CvTDs6RyOrdX2UKGgGR0CTqOFINEw4aAdN6ANoCEdAr1ElFMIu5HV9lChoBkdAmNTZb+tKZmgHTegDaAhHQK9S4dXko4N1fZQoaAZHQJfAmNWEK3NoB03oA2gIR0CvVUkrPMSsdX2UKGgGR0CZZEpwS8J2aAdN6ANoCEdAr1kPe1rqMXV9lChoBkdAmDburZJ04mgHTegDaAhHQK9d5nCfpUx1fZQoaAZHQJmvTrkbPyFoB03oA2gIR0CvX542S+xodX2UKGgGR0CRwKpUgjhUaAdN6ANoCEdAr2H5qKxcFHV9lChoBkdAl7vxppN9IGgHTegDaAhHQK9ltRw6ySp1fZQoaAZHQJVzN37k4m1oB03oA2gIR0CvaryLyc0+dX2UKGgGR0CXjPMUh3aBaAdN6ANoCEdAr2x+zMRpUXV9lChoBkdAmlg2JJoTPGgHTegDaAhHQK9u7MA3kxR1fZQoaAZHQJkU3ozN2TxoB03oA2gIR0Cvcp6rvLHNdX2UKGgGR0CauW5tWMjvaAdN6ANoCEdAr3eDEvTPSnV9lChoBkdAnWyf9YOlPGgHTegDaAhHQK95QQiA2AJ1fZQoaAZHQJlnUR/ViF1oB03oA2gIR0Cve8QJPZZkdX2UKGgGR0CWZFkK/mDEaAdN6ANoCEdAr3+BSzgMt3V9lChoBkdAmUIscABDHGgHTegDaAhHQK+EiA08/2V1fZQoaAZHQJtwdxYJVsFoB03oA2gIR0Cvhkcc+7lJdX2UKGgGR0CbxH3Ytg8baAdN6ANoCEdAr4i2mzjWCnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd888f21a404506d9908ab2e542dfdf2931a78cb0765c32241b9137faf86d58c
|
3 |
+
size 1013988
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1772.9721011228394, "std_reward": 413.64277685598927, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-12T10:04:54.810878"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbf4b32ca6699b728d7379b2b5efb34955ca7ffd9592c8f681ed0d01181718d5
|
3 |
+
size 2763
|