|
# Part of Speech tagging Model for Telugu |
|
|
|
#### How to use |
|
Use the below script from your python terminal as the web interface for inference has few encoding issues for Telugu |
|
|
|
PS: If you find my model useful, I would appreciate a note from you as it would encourage me to continue improving it and also add new models. |
|
|
|
```python |
|
from simpletransformers.ner import NERModel |
|
model = NERModel('bert', |
|
'kuppuluri/telugu_bertu_pos', |
|
args={"use_multiprocessing": False}, |
|
labels=[ |
|
'QC', 'JJ', 'NN', 'QF', 'RDP', 'O', |
|
'NNO', 'PRP', 'RP', 'VM', 'WQ', |
|
'PSP', 'UT', 'CC', 'INTF', 'SYMP', |
|
'NNP', 'INJ', 'SYM', 'CL', 'QO', |
|
'DEM', 'RB', 'NST', ], |
|
use_cuda=False) |
|
|
|
text = "విరాట్ కోహ్లీ కూడా అదే నిర్లక్ష్యాన్ని ప్రదర్శించి కేవలం ఒక పరుగుకే రనౌటై పెవిలియన్ చేరాడు ." |
|
results = model.predict([text]) |
|
``` |
|
|
|
## Training data |
|
|
|
Training data is from https://github.com/anikethjr/NER_Telugu |
|
|
|
## Eval results |
|
|
|
On the test set my results were |
|
|
|
eval_loss = 0.0036797842364565416 |
|
|
|
f1_score = 0.9983795127912227 |
|
|
|
precision = 0.9984325602401637 |
|
|
|
recall = 0.9983264709788816 |
|
|