nobu-g's picture
Update README.md
fa41ee3 verified
|
raw
history blame
5.17 kB
---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
library_name: transformers
tags:
- deberta
- deberta-v3
# - token-classification
datasets:
- wikipedia
- EleutherAI/pile
- bigcode/the-stack
- mc4
metrics:
- accuracy
# mask_token: "[MASK]"
# widget:
# - text: "京都大学で機械言語処理を研究する。"
---
# Model Card for Japanese DeBERTa V3 base
## Model description
This is a Japanese DeBERTa V3 base model pre-trained on LLM-jp corpus v1.0.
## How to use
You can use this model for masked language modeling as follows:
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v3-base-japanese')
model = AutoModelForMaskedLM.from_pretrained('ku-nlp/deberta-v3-base-japanese')
sentences = [
"京都大学で自然言語処理を研究する。",
"I research NLP at Kyoto University.",
'int main() { printf("Hello, world!"); return 0; }',
]
encodings = tokenizer(sentences, return_tensors='pt')
...
```
You can also fine-tune this model on downstream tasks.
## Tokenization
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp/llm-ja-tokenizer` for details on the vocabulary construction procedure.
Note that, unlike [ku-nlp/deberta-v2-base-japanese](https://huggingface.co/ku-nlp/deberta-v2-base-japanese), pre-segmentation by a morphological analyzer (e.g., Juman++) is no longer required for this model.
## Training data
We used the [LLM-jp corpus](https://github.com/llm-jp/llm-jp-corpus) v1.0.1 for pre-training.
The corpus consists of the following corpora:
- Japanese
- Wikipedia (1B tokens)
- mC4 (129B tokens)
- English
- Wikipedia (4B tokens)
- The Pile (126B tokens)
- Code
- The Stack (10B tokens)
We shuffled the corpora, which has 270B tokens in total, and trained the model for 2 epochs.
Thus, the total number of tokens fed to the model was 540B.
## Training procedure
We slightly modified [the official implementation of DeBERTa V3](https://github.com/microsoft/DeBERTa) and followed the official training procedure.
The modified code is available at [nobu-g/DeBERTa](https://github.com/nobu-g/DeBERTa).
The following hyperparameters were used during pre-training:
- learning_rate: 1e-4
- per_device_train_batch_size: 800
- num_devices: 8
- gradient_accumulation_steps: 3
- total_train_batch_size: 2400
- max_seq_length: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear schedule with warmup
- training_steps: 475,000
- warmup_steps: 10,000
## Fine-tuning on NLU tasks
We fine-tuned the following models and evaluated them on the dev set of JGLUE.
We tuned the learning rate and training epochs for each model and task following [the JGLUE paper](https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_pdf/-char/ja).
| Model | MARC-ja/acc | JCoLA/acc | JSTS/pearson | JSTS/spearman | JNLI/acc | JSQuAD/EM | JSQuAD/F1 | JComQA/acc |
|-------------------------------|-------------|-----------|--------------|---------------|----------|-----------|-----------|------------|
| Waseda RoBERTa base | 0.965 | 0.867 | 0.913 | 0.876 | 0.905 | 0.853 | 0.916 | 0.853 |
| Waseda RoBERTa large (seq512) | 0.969 | 0.849 | 0.925 | 0.890 | 0.928 | 0.910 | 0.955 | 0.900 |
| LUKE Japanese base* | 0.965 | - | 0.916 | 0.877 | 0.912 | - | - | 0.842 |
| LUKE Japanese large* | 0.965 | - | 0.932 | 0.902 | 0.927 | - | - | 0.893 |
| DeBERTaV2 base | 0.970 | 0.879 | 0.922 | 0.886 | 0.922 | 0.899 | 0.951 | 0.873 |
| DeBERTaV2 large | 0.968 | 0.882 | 0.925 | 0.892 | 0.924 | 0.912 | 0.959 | 0.890 |
| DeBERTaV3 base | 0.960 | 0.878 | 0.927 | 0.891 | 0.927 | 0.896 | 0.947 | 0.875 |
*The scores of LUKE are from [the official repository](https://github.com/studio-ousia/luke).
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Author
[Nobuhiro Ueda](https://huggingface.co/nobu-g) (ueda **at** nlp.ist.i.kyoto-u.ac.jp)
## Acknowledgments
This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) through General Collaboration Project no. jh231006, "Developing a Platform for Constructing and Sharing of Large-Scale Japanese Language Models".
For training models, we used the mdx: a platform for the data-driven future.