Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: Intellecta
|
9 |
+
results: []
|
10 |
+
datasets:
|
11 |
+
- fka/awesome-chatgpt-prompts
|
12 |
+
- BAAI/Infinity-Instruct
|
13 |
+
- allenai/WildChat-1M
|
14 |
+
- lavita/ChatDoctor-HealthCareMagic-100k
|
15 |
+
- zjunlp/Mol-Instructions
|
16 |
+
- garage-bAInd/Open-Platypus
|
17 |
+
language:
|
18 |
+
- en
|
19 |
+
---
|
20 |
+
|
21 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
22 |
+
should probably proofread and complete it, then remove this comment. -->
|
23 |
+
|
24 |
+
# Intellecta
|
25 |
+
|
26 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
The model is based on LLaMA (Large Language Model Meta AI), a family of state-of-the-art language models developed for natural language understanding and generation. This specific implementation uses the LLaMA 3.2-1B model, which is fine-tuned for general-purpose conversational AI tasks.
|
31 |
+
|
32 |
+
Architecture: Transformer-based causal language model.
|
33 |
+
Tokenization: Uses the AutoTokenizer compatible with the LLaMA model, with adjustments to ensure proper padding.
|
34 |
+
Pre-trained Foundation: The model builds on the pre-trained weights of LLaMA, focusing on improving performance for conversational and instruction-based tasks.
|
35 |
+
Implementation: Developed with Hugging Face’s Transformers library for extensibility and ease of use.
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
Intended Uses
|
40 |
+
Instruction-following tasks: Can perform tasks such as answering questions, summarizing, and text generation.
|
41 |
+
Conversational agents: Suitable for chatbots and virtual assistants, including those in specialized domains like healthcare or education.
|
42 |
+
Research and Development: Fine-tuning and benchmarking against datasets for downstream tasks.
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
Datasets Used
|
47 |
+
fka/awesome-chatgpt-prompts: General-purpose instruction-following and conversational dataset based on GPT-like interactions.
|
48 |
+
BAAI/Infinity-Instruct (3M): A large instruction dataset containing a wide variety of tasks and instructions.
|
49 |
+
allenai/WildChat-1M: Focused on open-ended conversational data.
|
50 |
+
lavita/ChatDoctor-HealthCareMagic-100k: Healthcare-specific dataset for medical conversational agents.
|
51 |
+
zjunlp/Mol-Instructions: Molecular biology-related instructions.
|
52 |
+
garage-bAInd/Open-Platypus: Dataset aimed at general-purpose, open-domain reasoning.
|
53 |
+
Data Preprocessing
|
54 |
+
Text prompts and responses are tokenized with padding and truncation.
|
55 |
+
Labels are derived from input tokens, masking padding tokens with -100 to exclude them from loss computation.
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
The training procedure for the model fine-tunes the pre-trained LLaMA 3.2-1B model on various datasets with a focus on instruction-following and conversational tasks. Below are the key aspects of the training process:
|
59 |
+
|
60 |
+
1. Preprocessing
|
61 |
+
Tokenization:
|
62 |
+
|
63 |
+
The input prompts and their responses are tokenized using the AutoTokenizer configured for LLaMA.
|
64 |
+
Special considerations:
|
65 |
+
Padding tokens are explicitly handled using the pad_token (set to the eos_token if undefined).
|
66 |
+
Inputs are truncated to a maximum length of 512 tokens to fit model constraints.
|
67 |
+
Label Preparation:
|
68 |
+
|
69 |
+
Input IDs are cloned to create labels for supervised learning.
|
70 |
+
Padding tokens in labels are masked with -100 to ensure they are ignored during loss computation.
|
71 |
+
Dataset Mapping:
|
72 |
+
|
73 |
+
Each dataset's prompt field is tokenized and reformatted into the model’s required input-output structure.
|
74 |
+
Non-standard datasets without a prompt column are skipped to avoid errors.
|
75 |
+
|
76 |
+
2. Model Setup
|
77 |
+
Pre-trained Model:
|
78 |
+
|
79 |
+
The base model, meta-llama/Llama-3.2-1B, is loaded with pre-trained weights.
|
80 |
+
It is fine-tuned for causal language modeling, focusing on instruction-based outputs.
|
81 |
+
Tokenizer Setup:
|
82 |
+
|
83 |
+
The tokenizer ensures consistency in encoding and decoding for the model.
|
84 |
+
Padding is fixed (using eos_token as a fallback).
|
85 |
+
|
86 |
+
3. Training Configuration
|
87 |
+
TrainingArguments:
|
88 |
+
|
89 |
+
The Hugging Face TrainingArguments object is used to configure the training process:
|
90 |
+
Output Directory: llama_output stores the model checkpoints and logs.
|
91 |
+
Epochs: 4 epochs for a balance between training time and generalization.
|
92 |
+
Batch Size: 4 examples per device to handle memory constraints.
|
93 |
+
Gradient Accumulation: 4 steps to simulate a larger effective batch size.
|
94 |
+
Learning Rate: 1e-4 with a warmup phase of 500 steps for stable optimization.
|
95 |
+
Weight Decay: 0.01 to mitigate overfitting.
|
96 |
+
Mixed Precision: FP16 (half-precision) is used for faster training and reduced memory usage.
|
97 |
+
Logging Steps: Logs are generated every 10 steps to monitor training progress.
|
98 |
+
Checkpointing: Model checkpoints are saved at the end of each epoch.
|
99 |
+
Push to Hub: The fine-tuned model is uploaded to Hugging Face’s Hub (kssrikar4/Intellecta).
|
100 |
+
Data Collator:
|
101 |
+
|
102 |
+
The DataCollatorForSeq2Seq ensures that batches are dynamically padded for efficiency during training.
|
103 |
+
|
104 |
+
4. Fine-Tuning Process
|
105 |
+
Trainer:
|
106 |
+
|
107 |
+
The Hugging Face Trainer class orchestrates the training process, combining the model, data, and training configuration.
|
108 |
+
Loss is computed for each batch using the model's outputs (e.g., logits) and the prepared labels.
|
109 |
+
The optimizer and learning rate scheduler are managed internally by the Trainer.
|
110 |
+
Training Loop:
|
111 |
+
|
112 |
+
During each epoch:
|
113 |
+
The model processes batches of tokenized prompts and computes the causal language modeling (CLM) loss.
|
114 |
+
Gradients are accumulated over multiple steps to simulate a larger batch size.
|
115 |
+
Optimizer updates are applied after gradient accumulation.
|
116 |
+
Validation:
|
117 |
+
|
118 |
+
While validation data is not explicitly defined in the code, the Trainer supports evaluation if an eval_dataset is provided.
|
119 |
+
Saving checkpoints at each epoch allows model evaluation post-training.
|
120 |
+
5. Post-Training
|
121 |
+
Push to Hub:
|
122 |
+
|
123 |
+
The trained model, along with its tokenizer and configuration, is pushed to the Hugging Face Hub under the ID kssrikar4/Intellecta.
|
124 |
+
Usage:
|
125 |
+
|
126 |
+
The fine-tuned model can be downloaded and directly used for inference or further fine-tuning.
|
127 |
+
|
128 |
+
|
129 |
+
### Training hyperparameters
|
130 |
+
|
131 |
+
The following hyperparameters were used during training:
|
132 |
+
- learning_rate: 0.0001
|
133 |
+
- train_batch_size: 4
|
134 |
+
- eval_batch_size: 8
|
135 |
+
- seed: 42
|
136 |
+
- gradient_accumulation_steps: 4
|
137 |
+
- total_train_batch_size: 16
|
138 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
139 |
+
- lr_scheduler_type: linear
|
140 |
+
- lr_scheduler_warmup_steps: 500
|
141 |
+
- num_epochs: 4
|
142 |
+
- mixed_precision_training: Native AMP
|
143 |
+
|
144 |
+
### Training results
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
### Framework versions
|
149 |
+
|
150 |
+
- Transformers 4.48.0
|
151 |
+
- Pytorch 2.5.1+cpu
|
152 |
+
- Datasets 3.2.0
|
153 |
+
- Tokenizers 0.21.0
|