End of training
Browse files- README.md +59 -56
- config.json +1 -1
- pytorch_model.bin +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,73 +52,76 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
|
|
61 |
- num_epochs: 50
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| No log | 1.0 |
|
68 |
-
| No log | 2.0 |
|
69 |
-
| No log | 3.0 |
|
70 |
-
| No log | 4.0 |
|
71 |
-
| No log | 5.0 |
|
72 |
-
| No log | 6.0 |
|
73 |
-
| No log | 7.0 |
|
74 |
-
| No log | 8.0 |
|
75 |
-
| No log | 9.0 |
|
76 |
-
| No log | 10.0 |
|
77 |
-
| No log | 11.0 |
|
78 |
-
| No log | 12.0 |
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
103 |
-
|
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
|
118 |
|
119 |
### Framework versions
|
120 |
|
121 |
-
- Transformers 4.33.
|
122 |
-
- Pytorch 2.0.1+
|
123 |
- Datasets 2.14.5
|
124 |
- Tokenizers 0.13.3
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.175
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.3469
|
36 |
+
- Accuracy: 0.175
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 64
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
- num_epochs: 50
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 1.0 | 10 | 2.0721 | 0.125 |
|
71 |
+
| No log | 2.0 | 20 | 2.0633 | 0.125 |
|
72 |
+
| No log | 3.0 | 30 | 2.0038 | 0.125 |
|
73 |
+
| No log | 4.0 | 40 | 1.9097 | 0.125 |
|
74 |
+
| No log | 5.0 | 50 | 1.7412 | 0.125 |
|
75 |
+
| No log | 6.0 | 60 | 1.6189 | 0.05 |
|
76 |
+
| No log | 7.0 | 70 | 1.5343 | 0.0375 |
|
77 |
+
| No log | 8.0 | 80 | 1.4746 | 0.0688 |
|
78 |
+
| No log | 9.0 | 90 | 1.4330 | 0.0938 |
|
79 |
+
| No log | 10.0 | 100 | 1.4130 | 0.15 |
|
80 |
+
| No log | 11.0 | 110 | 1.3735 | 0.1062 |
|
81 |
+
| No log | 12.0 | 120 | 1.3516 | 0.1062 |
|
82 |
+
| No log | 13.0 | 130 | 1.2838 | 0.1375 |
|
83 |
+
| No log | 14.0 | 140 | 1.3058 | 0.1187 |
|
84 |
+
| No log | 15.0 | 150 | 1.3116 | 0.1 |
|
85 |
+
| No log | 16.0 | 160 | 1.3269 | 0.1313 |
|
86 |
+
| No log | 17.0 | 170 | 1.2624 | 0.1062 |
|
87 |
+
| No log | 18.0 | 180 | 1.3285 | 0.1187 |
|
88 |
+
| No log | 19.0 | 190 | 1.3490 | 0.1437 |
|
89 |
+
| No log | 20.0 | 200 | 1.2592 | 0.1375 |
|
90 |
+
| No log | 21.0 | 210 | 1.3600 | 0.0938 |
|
91 |
+
| No log | 22.0 | 220 | 1.2835 | 0.1313 |
|
92 |
+
| No log | 23.0 | 230 | 1.2842 | 0.1375 |
|
93 |
+
| No log | 24.0 | 240 | 1.2840 | 0.1 |
|
94 |
+
| No log | 25.0 | 250 | 1.2456 | 0.1313 |
|
95 |
+
| No log | 26.0 | 260 | 1.2960 | 0.1562 |
|
96 |
+
| No log | 27.0 | 270 | 1.3208 | 0.1375 |
|
97 |
+
| No log | 28.0 | 280 | 1.3207 | 0.1375 |
|
98 |
+
| No log | 29.0 | 290 | 1.2892 | 0.175 |
|
99 |
+
| No log | 30.0 | 300 | 1.2837 | 0.1812 |
|
100 |
+
| No log | 31.0 | 310 | 1.3548 | 0.1562 |
|
101 |
+
| No log | 32.0 | 320 | 1.4371 | 0.1437 |
|
102 |
+
| No log | 33.0 | 330 | 1.4219 | 0.1562 |
|
103 |
+
| No log | 34.0 | 340 | 1.4033 | 0.1875 |
|
104 |
+
| No log | 35.0 | 350 | 1.4505 | 0.1437 |
|
105 |
+
| No log | 36.0 | 360 | 1.2975 | 0.1562 |
|
106 |
+
| No log | 37.0 | 370 | 1.3906 | 0.1562 |
|
107 |
+
| No log | 38.0 | 380 | 1.3547 | 0.1688 |
|
108 |
+
| No log | 39.0 | 390 | 1.4706 | 0.1938 |
|
109 |
+
| No log | 40.0 | 400 | 1.3595 | 0.1625 |
|
110 |
+
| No log | 41.0 | 410 | 1.4236 | 0.1625 |
|
111 |
+
| No log | 42.0 | 420 | 1.4180 | 0.1812 |
|
112 |
+
| No log | 43.0 | 430 | 1.3993 | 0.1562 |
|
113 |
+
| No log | 44.0 | 440 | 1.4066 | 0.1625 |
|
114 |
+
| No log | 45.0 | 450 | 1.3760 | 0.175 |
|
115 |
+
| No log | 46.0 | 460 | 1.4221 | 0.1812 |
|
116 |
+
| No log | 47.0 | 470 | 1.3772 | 0.1625 |
|
117 |
+
| No log | 48.0 | 480 | 1.4265 | 0.2 |
|
118 |
+
| No log | 49.0 | 490 | 1.4716 | 0.1625 |
|
119 |
+
| 0.6962 | 50.0 | 500 | 1.3917 | 0.1625 |
|
120 |
|
121 |
|
122 |
### Framework versions
|
123 |
|
124 |
+
- Transformers 4.33.1
|
125 |
+
- Pytorch 2.0.1+cu117
|
126 |
- Datasets 2.14.5
|
127 |
- Tokenizers 0.13.3
|
config.json
CHANGED
@@ -40,5 +40,5 @@
|
|
40 |
"problem_type": "single_label_classification",
|
41 |
"qkv_bias": true,
|
42 |
"torch_dtype": "float32",
|
43 |
-
"transformers_version": "4.33.
|
44 |
}
|
|
|
40 |
"problem_type": "single_label_classification",
|
41 |
"qkv_bias": true,
|
42 |
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.33.1"
|
44 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343287149
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:996e2f6303ec57de47ff7b46aaf04687ba1b4a4f0d2c342d23955e922816df6c
|
3 |
size 343287149
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4027
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6727b65ac1c11710bc585aebbef0a5e42af550e6e730a2f6d922513c353d2917
|
3 |
size 4027
|