viccpoes's picture
Add diffusers (#1)
5b1c701 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
from typing import Optional
import os
import warnings
# Global state for lazy initialization
_SAGEATTN_AVAILABLE = None
_FLASH_ATTN_3_AVAILABLE = None
_FLASH_ATTN_2_AVAILABLE = None
_sageattn_func = None
_flash_attn_func = None
_flash_attn_interface = None
_flash_attn = None
def _init_sageattention():
"""Lazy initialization for SageAttention."""
global _SAGEATTN_AVAILABLE, _sageattn_func
if _SAGEATTN_AVAILABLE is not None:
return _SAGEATTN_AVAILABLE
_SAGEATTN_AVAILABLE = False
try:
if os.getenv("DISABLE_SAGEATTENTION", "0") != "0":
raise Exception("DISABLE_SAGEATTENTION is set")
from sageattention import sageattn
@torch.library.custom_op(
"mylib::sageattn", mutates_args={"q", "k", "v"}, device_types="cuda"
)
def sageattn_func(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0,
is_causal: bool = False,
) -> torch.Tensor:
return sageattn(
q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
)
@sageattn_func.register_fake
def _sageattn_fake(q, k, v, attn_mask=None, dropout_p=0, is_causal=False):
return torch.empty(*q.shape, device=q.device, dtype=q.dtype)
print("SageAttention loaded successfully")
_sageattn_func = sageattn_func
_SAGEATTN_AVAILABLE = True
except Exception as e:
print(f"Warning: Could not load sageattention: {str(e)}")
if isinstance(e, ModuleNotFoundError):
print("sageattention package is not installed")
elif isinstance(e, ImportError) and "DLL" in str(e):
print("sageattention DLL loading error")
_sageattn_func = None
return _SAGEATTN_AVAILABLE
def _is_hopper_gpu():
"""Check if the current GPU is a Hopper architecture."""
if not torch.cuda.is_available():
return False
device_name = torch.cuda.get_device_name(0).lower()
return "h100" in device_name or "hopper" in device_name
def _init_flash_attention_3():
"""Lazy initialization for Flash Attention 3."""
global _FLASH_ATTN_3_AVAILABLE, _flash_attn_func, _flash_attn_interface
if _FLASH_ATTN_3_AVAILABLE is not None:
return _FLASH_ATTN_3_AVAILABLE
_FLASH_ATTN_3_AVAILABLE = False
try:
from flash_attn import flash_attn_func
import flash_attn_interface
# Always set the function reference if flash_attn is available
_flash_attn_func = flash_attn_func
_flash_attn_interface = flash_attn_interface
# FA3 optimizations only available on Hopper GPUs
_FLASH_ATTN_3_AVAILABLE = _is_hopper_gpu()
except ModuleNotFoundError:
_FLASH_ATTN_3_AVAILABLE = False
_flash_attn_func = None
_flash_attn_interface = None
return _FLASH_ATTN_3_AVAILABLE
def _init_flash_attention_2():
"""Lazy initialization for Flash Attention 2."""
global _FLASH_ATTN_2_AVAILABLE, _flash_attn
if _FLASH_ATTN_2_AVAILABLE is not None:
return _FLASH_ATTN_2_AVAILABLE
_FLASH_ATTN_2_AVAILABLE = False
try:
import flash_attn
_flash_attn = flash_attn
_FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
_FLASH_ATTN_2_AVAILABLE = False
return _FLASH_ATTN_2_AVAILABLE
__all__ = ["flash_attention", "attention"]
# Compatibility getters for external code
def sageattn_func():
"""Getter for sageattn_func - initializes if needed."""
_init_sageattention()
return _sageattn_func
def SAGEATTN_AVAILABLE():
"""Getter for SAGEATTN_AVAILABLE - initializes if needed."""
return _init_sageattention()
def flash_attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.0,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
version=None,
):
"""
q: [B, Lq, Nq, C1].
k: [B, Lk, Nk, C1].
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
q_lens: [B].
k_lens: [B].
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
causal: bool. Whether to apply causal attention mask.
window_size: (left right). If not (-1, -1), apply sliding window local attention.
deterministic: bool. If True, slightly slower and uses more memory.
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
"""
# Initialize flash attention modules
flash_attn_3_available = _init_flash_attention_3()
flash_attn_2_available = _init_flash_attention_2()
# Early fallback for simple cases when advanced features aren't needed
# Only use this path if flash_attn is available but we're not using FA3 features
if not flash_attn_3_available and _flash_attn_func is not None and q_lens is None and k_lens is None:
return _flash_attn_func(
q,
k,
v,
)
half_dtypes = (torch.float16, torch.bfloat16)
assert dtype in half_dtypes
assert q.device.type == "cuda" and q.size(-1) <= 256
# params
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# preprocess query
if q_lens is None:
q = half(q.flatten(0, 1))
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(
device=q.device, non_blocking=True
)
else:
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
# preprocess key, value
if k_lens is None:
k = half(k.flatten(0, 1))
v = half(v.flatten(0, 1))
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(
device=k.device, non_blocking=True
)
else:
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
q = q.to(v.dtype)
k = k.to(v.dtype)
if q_scale is not None:
q = q * q_scale
if version is not None and version == 3 and not flash_attn_3_available:
warnings.warn(
"Flash attention 3 is not available, use flash attention 2 instead."
)
# apply attention
if (version is None or version == 3) and flash_attn_3_available:
# Note: dropout_p, window_size are not supported in FA3 now.
x = _flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens])
.cumsum(0, dtype=torch.int32)
.to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens])
.cumsum(0, dtype=torch.int32)
.to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic,
).unflatten(0, (b, lq))
else:
assert flash_attn_2_available
x = _flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens])
.cumsum(0, dtype=torch.int32)
.to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens])
.cumsum(0, dtype=torch.int32)
.to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic,
).unflatten(0, (b, lq))
# output
return x.type(out_dtype)
def attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_lens=None,
k_lens=None,
dropout_p=0.0,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
fa_version=None,
# og_dtype=torch.bfloat16,
):
# Initialize attention modules
sageattn_available = _init_sageattention()
flash_attn_2_available = _init_flash_attention_2()
flash_attn_3_available = _init_flash_attention_3()
if sageattn_available:
# print("Using sageattention")
attn_mask = None
og_dtype = q.dtype
q = q.transpose(1, 2).to(dtype)
k = k.transpose(1, 2).to(dtype)
v = v.transpose(1, 2).to(dtype)
out = _sageattn_func(
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p
)
out = out.transpose(1, 2).contiguous().to(og_dtype)
return out
elif flash_attn_2_available or flash_attn_3_available:
return flash_attention(
q=q,
k=k,
v=v,
q_lens=q_lens,
k_lens=k_lens,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
q_scale=q_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic,
dtype=dtype,
version=fa_version,
)
else:
if q_lens is not None or k_lens is not None:
warnings.warn(
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance."
)
attn_mask = None
q = q.transpose(1, 2).to(dtype)
k = k.transpose(1, 2).to(dtype)
v = v.transpose(1, 2).to(dtype)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p
)
out = out.transpose(1, 2).contiguous()
return out