|
|
|
|
|
import torch |
|
|
from typing import Optional |
|
|
import os |
|
|
import warnings |
|
|
|
|
|
|
|
|
_SAGEATTN_AVAILABLE = None |
|
|
_FLASH_ATTN_3_AVAILABLE = None |
|
|
_FLASH_ATTN_2_AVAILABLE = None |
|
|
_sageattn_func = None |
|
|
_flash_attn_func = None |
|
|
_flash_attn_interface = None |
|
|
_flash_attn = None |
|
|
|
|
|
|
|
|
def _init_sageattention(): |
|
|
"""Lazy initialization for SageAttention.""" |
|
|
global _SAGEATTN_AVAILABLE, _sageattn_func |
|
|
|
|
|
if _SAGEATTN_AVAILABLE is not None: |
|
|
return _SAGEATTN_AVAILABLE |
|
|
|
|
|
_SAGEATTN_AVAILABLE = False |
|
|
try: |
|
|
if os.getenv("DISABLE_SAGEATTENTION", "0") != "0": |
|
|
raise Exception("DISABLE_SAGEATTENTION is set") |
|
|
|
|
|
from sageattention import sageattn |
|
|
|
|
|
@torch.library.custom_op( |
|
|
"mylib::sageattn", mutates_args={"q", "k", "v"}, device_types="cuda" |
|
|
) |
|
|
def sageattn_func( |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
v: torch.Tensor, |
|
|
attn_mask: Optional[torch.Tensor] = None, |
|
|
dropout_p: float = 0, |
|
|
is_causal: bool = False, |
|
|
) -> torch.Tensor: |
|
|
return sageattn( |
|
|
q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal |
|
|
) |
|
|
|
|
|
@sageattn_func.register_fake |
|
|
def _sageattn_fake(q, k, v, attn_mask=None, dropout_p=0, is_causal=False): |
|
|
return torch.empty(*q.shape, device=q.device, dtype=q.dtype) |
|
|
|
|
|
print("SageAttention loaded successfully") |
|
|
_sageattn_func = sageattn_func |
|
|
_SAGEATTN_AVAILABLE = True |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Warning: Could not load sageattention: {str(e)}") |
|
|
if isinstance(e, ModuleNotFoundError): |
|
|
print("sageattention package is not installed") |
|
|
elif isinstance(e, ImportError) and "DLL" in str(e): |
|
|
print("sageattention DLL loading error") |
|
|
_sageattn_func = None |
|
|
|
|
|
return _SAGEATTN_AVAILABLE |
|
|
|
|
|
|
|
|
def _is_hopper_gpu(): |
|
|
"""Check if the current GPU is a Hopper architecture.""" |
|
|
if not torch.cuda.is_available(): |
|
|
return False |
|
|
device_name = torch.cuda.get_device_name(0).lower() |
|
|
return "h100" in device_name or "hopper" in device_name |
|
|
|
|
|
|
|
|
def _init_flash_attention_3(): |
|
|
"""Lazy initialization for Flash Attention 3.""" |
|
|
global _FLASH_ATTN_3_AVAILABLE, _flash_attn_func, _flash_attn_interface |
|
|
|
|
|
if _FLASH_ATTN_3_AVAILABLE is not None: |
|
|
return _FLASH_ATTN_3_AVAILABLE |
|
|
|
|
|
_FLASH_ATTN_3_AVAILABLE = False |
|
|
try: |
|
|
from flash_attn import flash_attn_func |
|
|
import flash_attn_interface |
|
|
|
|
|
|
|
|
_flash_attn_func = flash_attn_func |
|
|
_flash_attn_interface = flash_attn_interface |
|
|
|
|
|
_FLASH_ATTN_3_AVAILABLE = _is_hopper_gpu() |
|
|
except ModuleNotFoundError: |
|
|
_FLASH_ATTN_3_AVAILABLE = False |
|
|
_flash_attn_func = None |
|
|
_flash_attn_interface = None |
|
|
|
|
|
return _FLASH_ATTN_3_AVAILABLE |
|
|
|
|
|
|
|
|
def _init_flash_attention_2(): |
|
|
"""Lazy initialization for Flash Attention 2.""" |
|
|
global _FLASH_ATTN_2_AVAILABLE, _flash_attn |
|
|
|
|
|
if _FLASH_ATTN_2_AVAILABLE is not None: |
|
|
return _FLASH_ATTN_2_AVAILABLE |
|
|
|
|
|
_FLASH_ATTN_2_AVAILABLE = False |
|
|
try: |
|
|
import flash_attn |
|
|
|
|
|
_flash_attn = flash_attn |
|
|
_FLASH_ATTN_2_AVAILABLE = True |
|
|
except ModuleNotFoundError: |
|
|
_FLASH_ATTN_2_AVAILABLE = False |
|
|
|
|
|
return _FLASH_ATTN_2_AVAILABLE |
|
|
|
|
|
__all__ = ["flash_attention", "attention"] |
|
|
|
|
|
|
|
|
|
|
|
def sageattn_func(): |
|
|
"""Getter for sageattn_func - initializes if needed.""" |
|
|
_init_sageattention() |
|
|
return _sageattn_func |
|
|
|
|
|
|
|
|
def SAGEATTN_AVAILABLE(): |
|
|
"""Getter for SAGEATTN_AVAILABLE - initializes if needed.""" |
|
|
return _init_sageattention() |
|
|
|
|
|
|
|
|
def flash_attention( |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
q_lens=None, |
|
|
k_lens=None, |
|
|
dropout_p=0.0, |
|
|
softmax_scale=None, |
|
|
q_scale=None, |
|
|
causal=False, |
|
|
window_size=(-1, -1), |
|
|
deterministic=False, |
|
|
dtype=torch.bfloat16, |
|
|
version=None, |
|
|
): |
|
|
""" |
|
|
q: [B, Lq, Nq, C1]. |
|
|
k: [B, Lk, Nk, C1]. |
|
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. |
|
|
q_lens: [B]. |
|
|
k_lens: [B]. |
|
|
dropout_p: float. Dropout probability. |
|
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
|
causal: bool. Whether to apply causal attention mask. |
|
|
window_size: (left right). If not (-1, -1), apply sliding window local attention. |
|
|
deterministic: bool. If True, slightly slower and uses more memory. |
|
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. |
|
|
""" |
|
|
|
|
|
flash_attn_3_available = _init_flash_attention_3() |
|
|
flash_attn_2_available = _init_flash_attention_2() |
|
|
|
|
|
|
|
|
|
|
|
if not flash_attn_3_available and _flash_attn_func is not None and q_lens is None and k_lens is None: |
|
|
return _flash_attn_func( |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
) |
|
|
|
|
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
|
assert dtype in half_dtypes |
|
|
assert q.device.type == "cuda" and q.size(-1) <= 256 |
|
|
|
|
|
|
|
|
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype |
|
|
|
|
|
def half(x): |
|
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
|
|
|
if q_lens is None: |
|
|
q = half(q.flatten(0, 1)) |
|
|
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to( |
|
|
device=q.device, non_blocking=True |
|
|
) |
|
|
else: |
|
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) |
|
|
|
|
|
|
|
|
if k_lens is None: |
|
|
k = half(k.flatten(0, 1)) |
|
|
v = half(v.flatten(0, 1)) |
|
|
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to( |
|
|
device=k.device, non_blocking=True |
|
|
) |
|
|
else: |
|
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) |
|
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) |
|
|
|
|
|
q = q.to(v.dtype) |
|
|
k = k.to(v.dtype) |
|
|
|
|
|
if q_scale is not None: |
|
|
q = q * q_scale |
|
|
|
|
|
if version is not None and version == 3 and not flash_attn_3_available: |
|
|
warnings.warn( |
|
|
"Flash attention 3 is not available, use flash attention 2 instead." |
|
|
) |
|
|
|
|
|
|
|
|
if (version is None or version == 3) and flash_attn_3_available: |
|
|
|
|
|
x = _flash_attn_interface.flash_attn_varlen_func( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]) |
|
|
.cumsum(0, dtype=torch.int32) |
|
|
.to(q.device, non_blocking=True), |
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]) |
|
|
.cumsum(0, dtype=torch.int32) |
|
|
.to(q.device, non_blocking=True), |
|
|
max_seqlen_q=lq, |
|
|
max_seqlen_k=lk, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
deterministic=deterministic, |
|
|
).unflatten(0, (b, lq)) |
|
|
else: |
|
|
assert flash_attn_2_available |
|
|
x = _flash_attn.flash_attn_varlen_func( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]) |
|
|
.cumsum(0, dtype=torch.int32) |
|
|
.to(q.device, non_blocking=True), |
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]) |
|
|
.cumsum(0, dtype=torch.int32) |
|
|
.to(q.device, non_blocking=True), |
|
|
max_seqlen_q=lq, |
|
|
max_seqlen_k=lk, |
|
|
dropout_p=dropout_p, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
window_size=window_size, |
|
|
deterministic=deterministic, |
|
|
).unflatten(0, (b, lq)) |
|
|
|
|
|
|
|
|
return x.type(out_dtype) |
|
|
|
|
|
|
|
|
def attention( |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
v: torch.Tensor, |
|
|
q_lens=None, |
|
|
k_lens=None, |
|
|
dropout_p=0.0, |
|
|
softmax_scale=None, |
|
|
q_scale=None, |
|
|
causal=False, |
|
|
window_size=(-1, -1), |
|
|
deterministic=False, |
|
|
dtype=torch.bfloat16, |
|
|
fa_version=None, |
|
|
|
|
|
): |
|
|
|
|
|
sageattn_available = _init_sageattention() |
|
|
flash_attn_2_available = _init_flash_attention_2() |
|
|
flash_attn_3_available = _init_flash_attention_3() |
|
|
|
|
|
if sageattn_available: |
|
|
|
|
|
attn_mask = None |
|
|
|
|
|
og_dtype = q.dtype |
|
|
q = q.transpose(1, 2).to(dtype) |
|
|
k = k.transpose(1, 2).to(dtype) |
|
|
v = v.transpose(1, 2).to(dtype) |
|
|
|
|
|
out = _sageattn_func( |
|
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p |
|
|
) |
|
|
|
|
|
out = out.transpose(1, 2).contiguous().to(og_dtype) |
|
|
return out |
|
|
|
|
|
elif flash_attn_2_available or flash_attn_3_available: |
|
|
return flash_attention( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
q_lens=q_lens, |
|
|
k_lens=k_lens, |
|
|
dropout_p=dropout_p, |
|
|
softmax_scale=softmax_scale, |
|
|
q_scale=q_scale, |
|
|
causal=causal, |
|
|
window_size=window_size, |
|
|
deterministic=deterministic, |
|
|
dtype=dtype, |
|
|
version=fa_version, |
|
|
) |
|
|
else: |
|
|
if q_lens is not None or k_lens is not None: |
|
|
warnings.warn( |
|
|
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance." |
|
|
) |
|
|
attn_mask = None |
|
|
|
|
|
q = q.transpose(1, 2).to(dtype) |
|
|
k = k.transpose(1, 2).to(dtype) |
|
|
v = v.transpose(1, 2).to(dtype) |
|
|
|
|
|
out = torch.nn.functional.scaled_dot_product_attention( |
|
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p |
|
|
) |
|
|
|
|
|
out = out.transpose(1, 2).contiguous() |
|
|
return out |
|
|
|