metadata
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NousResearch/Llama-2-7b-chat-hf
model-index:
- name: results
results: []
#dataset-used: codeparrot/xlcost-text-to-code
#github notebook: https://github.com/manishzed/LLM-Fine-tune/blob/main/Llama_2_7b_chat_fine_tune_text_to_python.ipynb
#code
#testing and loading model
import torch, gc
gc.collect()
torch.cuda.empty_cache()
import numpy as np
import pandas as pd
import os
from tqdm import tqdm
import bitsandbytes as bnb
import torch
import torch.nn as nn
import transformers
from datasets import Dataset
from peft import LoraConfig, PeftConfig
from trl import SFTTrainer
from transformers import (AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
pipeline,
logging)
from sklearn.metrics import (accuracy_score,
classification_report,
confusion_matrix)
from sklearn.model_selection import train_test_split
from datasets import load_dataset
#testing----1
# Ruta del modelo guardado en el dataset de Kaggle
from peft import LoraConfig, PeftModel
device_map = {"": 0}
PEFT_MODEL = "kr-manish/Llama-2-7b-chat-fine-tune-text-to-python"
#model_name = "NousResearch/Llama-2-7b-hf"
# Cargar la configuración del modelo
config = PeftConfig.from_pretrained(PEFT_MODEL)
# Cargar el modelo
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
low_cpu_mem_usage=True,
return_dict=True,
#quantization_config=bnb_config,
device_map="auto",
#trust_remote_code=True,
torch_dtype=torch.float16,
)
# Cargar el tokenizador
tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
# Cargar el modelo PEFT
load_model = PeftModel.from_pretrained(model, PEFT_MODEL)
input_text ="Program to convert Centimeters to Pixels | Function to convert centimeters to pixels ; Driver Code"
prompt_test = input_text
pipe_test = pipeline(task="text-generation",
model=load_model,
tokenizer=tokenizer,
max_length =200,
#max_new_tokens =25,
)
#result_test = pipe_test(prompt_test)
#answer_test = result_test[0]['generated_text']
#answer_test
#or
result = pipe_test(f"<s>[INST] {input_text} [/INST]")
print(result[0]['generated_text'])
#Program to convert Centimeters to Pixels | Function to convert centimeters to pixels ; Driver Code [/code] def convertCentimetersToPixels ( cm ) : NEW_LINE INDENT pixels =
#code
results
This model is a fine-tuned version of NousResearch/Llama-2-7b-chat-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7746
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7836 | 1.0 | 463 | 0.7746 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2