|
from time import time |
|
from pprint import pprint |
|
import torch |
|
from transformers import pipeline |
|
from datasets import load_dataset |
|
|
|
|
|
generate_kwargs = {"language": "japanese", "task": "transcribe"} |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
|
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model_id, |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
test_audio = [ |
|
"kotoba-whisper-eval/audio/manzai1.wav", |
|
"kotoba-whisper-eval/audio/manzai2.wav", |
|
"kotoba-whisper-eval/audio/manzai3.wav", |
|
"kotoba-whisper-eval/audio/long_interview_1.wav", |
|
] |
|
elapsed = {} |
|
for x in test_audio: |
|
start = time() |
|
transcription = pipe(x, generate_kwargs=generate_kwargs) |
|
elapsed[x] = time() - start |
|
pprint(transcription) |
|
pprint(elapsed) |