|
--- |
|
license: apache-2.0 |
|
language: ja |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- hf-asr-leaderboard |
|
widget: |
|
- example_title: CommonVoice 8.0 (Test Split) |
|
src: >- |
|
https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0/resolve/main/sample.flac |
|
- example_title: JSUT Basic 5000 |
|
src: >- |
|
https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000/resolve/main/sample.flac |
|
- example_title: ReazonSpeech (Test Split) |
|
src: >- |
|
https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test/resolve/main/sample.flac |
|
pipeline_tag: automatic-speech-recognition |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: kotoba-tech/kotoba-whisper-v1.0 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: CommonVoice_8.0 (Japanese) |
|
type: japanese-asr/ja_asr.common_voice_8_0 |
|
metrics: |
|
- name: WER |
|
type: WER |
|
value: 59.27 |
|
- name: CER |
|
type: CER |
|
value: 9.44 |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: ReazonSpeech (Test) |
|
type: japanese-asr/ja_asr.reazonspeech_test |
|
metrics: |
|
- name: WER |
|
type: WER |
|
value: 56.62 |
|
- name: CER |
|
type: CER |
|
value: 12.60 |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: JSUT Basic5000 |
|
type: japanese-asr/ja_asr.jsut_basic5000 |
|
metrics: |
|
- name: WER |
|
type: WER |
|
value: 64.36 |
|
- name: CER |
|
type: CER |
|
value: 8.48 |
|
--- |
|
|
|
# Kotoba-Whisper |
|
_Kotoba-Whisper_ is a collection of distilled [Whisper](https://arxiv.org/abs/2212.04356) models for Japanese ASR, developed through the collaboration bewteen |
|
[Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech). |
|
Following the original work of distil-whisper ([Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430)), |
|
we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3) as the teacher model, and the student model consists the full encoder of the |
|
teacher large-v3 model and the decoder with two layers initialized from the first and last layer of the large-v3 model. |
|
Kotoba-Whisper is **6.3x faster than large-v3**, while retaining as low error rate as the large-v3. |
|
|
|
As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) |
|
(the largest speech-transcription paired dataset in Japanese extracted from Japanese TV audio recordings), |
|
which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average) after |
|
those transcriptions more than 10 WER are removed (see [WER Filter](https://huggingface.co/distil-whisper/distil-large-v3#wer-filter) for detail). |
|
The model was trained for 8 epochs with batch size 256 with sampling rate of 16kHz, and the training and evaluation code to reproduce kotoba-whisper is available at [https://github.com/kotoba-tech/kotoba-whisper](https://github.com/kotoba-tech/kotoba-whisper). |
|
|
|
Kotoba-whisper-v1.0 achieves better CER and WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set |
|
from ReazonSpeech, and achieves competitive CER and WER on the out-of-domain test sets including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and |
|
the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice) (see [Evaluation](#evaluation) for detail). |
|
|
|
- ***CER*** |
|
|
|
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test | |
|
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:| |
|
| [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 9.44 | 8.48 | **12.60** | |
|
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | **8.52** | **7.18** | 15.18 | |
|
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 | |
|
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 | |
|
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 | |
|
|
|
- ***WER*** |
|
|
|
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test | |
|
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:| |
|
| [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 59.27 | 64.36 | **56.62** | |
|
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | **55.41** | **59.34** | 60.23 | |
|
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 63.64 | 69.52 | 76.04 | |
|
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 74.21 | 82.02 | 82.99 | |
|
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 93.78 | 97.72 | 94.85 | |
|
|
|
- ***Latency***: As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3), |
|
it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) |
|
(**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)). |
|
|
|
| Model | Params / M | Rel. Latency | |
|
|----------------------------------------------------------------------------------------------|------------|--------------| |
|
| **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** | |
|
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 | |
|
|
|
|
|
## Transformers Usage |
|
Kotoba-Whisper is supported in the Hugging Face π€ Transformers library from version 4.39 onwards. To run the model, first |
|
install the latest version of Transformers. For this example, we'll also install π€ Datasets to load a toy audio dataset |
|
from the Hugging Face Hub: |
|
|
|
```bash |
|
pip install --upgrade pip |
|
pip install --upgrade transformers accelerate datasets[audio] |
|
``` |
|
|
|
### Short-Form Transcription |
|
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) |
|
class to transcribe short-form audio files (< 30-seconds) as follows: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset, Audio |
|
|
|
# config |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
# load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
# load sample audio & downsample to 16kHz |
|
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test") |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
sample = dataset[0]["audio"] |
|
|
|
# run inference |
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline (make sure the audio is sampled in 16kHz): |
|
```diff |
|
- result = pipe(sample) |
|
+ result = pipe("audio.mp3") |
|
``` |
|
|
|
- For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output: |
|
```python |
|
result = pipe(sample, return_timestamps=True) |
|
print(result["chunks"]) |
|
``` |
|
|
|
### Sequential Long-Form |
|
Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered |
|
inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form). |
|
The sequential long-form algorithm should be used in either of the following scenarios: |
|
|
|
1. Transcription accuracy is the most important factor, and latency is less of a consideration |
|
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate |
|
|
|
If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm |
|
described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of |
|
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) |
|
class can be used to transcribe long audio files with the sequential algorithm as follows: |
|
|
|
```python |
|
import torch |
|
import numpy as np |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset |
|
|
|
# config |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
# load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
# load sample audio (concatenate instances to creaete a long audio) |
|
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test") |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"} |
|
|
|
# run inference |
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
|
|
### Chunked Long-Form |
|
This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances, |
|
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)). |
|
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds |
|
is optimal. To activate batching over long audio files, pass the argument `batch_size`: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset |
|
|
|
# config |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
# load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=25, |
|
batch_size=16, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
# load sample audio (concatenate instances to creaete a long audio) |
|
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test") |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"} |
|
|
|
# run inference |
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
### Transcription with Prompt |
|
Kotoba-whisper can generate transcription with prompting as below: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset, Audio |
|
|
|
# config |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
# load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
# load sample audio & downsample to 16kHz |
|
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test") |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
input_features = processor(dataset[10]["audio"]["array"], return_tensors="pt").input_features |
|
|
|
# --- Without prompt --- |
|
output_without_prompt = model.generate(input_features) |
|
print(processor.decode(output_without_prompt[0])) |
|
# <|startoftranscript|><|ko|><|transcribe|><|notimestamps|>81ζ³γεεΌ·γθ΅°γγ«ε€γγ£γ¦γγΎγγ<|endoftext|> |
|
|
|
# --- With prompt ---: Let's change `81` to `91`. |
|
prompt_ids = processor.get_prompt_ids("91ζ³", return_tensors="pt") |
|
output_with_prompt = model.generate(input_features, prompt_ids=prompt_ids) |
|
print(processor.decode(output_with_prompt[0])) |
|
# <|startofprev|> 91ζ³<|startoftranscript|><|ko|><|transcribe|><|notimestamps|> γγ£γΆγ£γγ§γγΉγ«γ¬γγγ91ζ³γεεΌ·γθ΅°γγ«ε€γγ£γ¦γγΎγγ<|endoftext|> |
|
``` |
|
|
|
### Additional Speed & Memory Improvements |
|
You can apply additional speed and memory improvements to further reduce the inference speed and VRAM |
|
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a |
|
more efficient flash attention version. |
|
|
|
#### Flash Attention 2 |
|
|
|
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) |
|
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention): |
|
|
|
``` |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`: |
|
|
|
```diff |
|
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2") |
|
``` |
|
|
|
#### Torch Scale-Product-Attention (SDPA) |
|
|
|
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html). |
|
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check |
|
whether you have a compatible PyTorch version, run the following Python code snippet: |
|
|
|
```python |
|
from transformers.utils import is_torch_sdpa_available |
|
|
|
print(is_torch_sdpa_available()) |
|
``` |
|
|
|
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it |
|
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/) |
|
|
|
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying |
|
`attn_implementation="sdpa"` as follows: |
|
|
|
```diff |
|
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa") |
|
``` |
|
|
|
|
|
## Model Details |
|
See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details). |
|
|
|
|
|
## Evaluation |
|
The following code-snippets demonstrates how to evaluate the kotoba-whisper model on the Japanese subset of the CommonVoice 8.0. |
|
First, we need to install the required packages, including π€ Datasets to load the audio data, and π€ Evaluate to |
|
perform the WER calculation: |
|
|
|
```bash |
|
pip install --upgrade pip |
|
pip install --upgrade transformers datasets[audio] evaluate jiwer |
|
``` |
|
|
|
Evaluation can then be run end-to-end with the following example: |
|
|
|
```python |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor |
|
from datasets import load_dataset, Audio |
|
from evaluate import load |
|
import torch |
|
from tqdm import tqdm |
|
|
|
# config |
|
model_id = "kotoba-tech/kotoba-whisper-v1.0" |
|
dataset_name = "japanese-asr/ja_asr.reazonspeech_test" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
audio_column = 'audio' |
|
text_column = 'transcription' |
|
batch_size = 16 |
|
|
|
# load model |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
# load the dataset and sample the audio with 16kHz |
|
dataset = load_dataset(dataset_name, split="test") |
|
dataset = dataset.cast_column(audio_column, Audio(sampling_rate=processor.feature_extractor.sampling_rate)) |
|
|
|
# preprocess and batch the dataset |
|
|
|
def inference(batch): |
|
# 1. Pre-process the audio data to log-mel spectrogram inputs |
|
audio = [sample["array"] for sample in batch["audio"]] |
|
input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features |
|
input_features = input_features.to(device, dtype=torch_dtype) |
|
# 2. Auto-regressively generate the predicted token ids |
|
pred_ids = model.generate(input_features, language="ja", max_new_tokens=128) |
|
# 3. Decode the token ids to the final transcription |
|
batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True) |
|
batch["reference"] = batch[text_column] |
|
return batch |
|
|
|
dataset = dataset.map(function=inference, batched=True, batch_size=batch_size) |
|
|
|
# iterate over the dataset and run inference |
|
all_transcriptions = [] |
|
all_references = [] |
|
for result in tqdm(dataset, desc="Evaluating..."): |
|
all_transcriptions.append(result["transcription"]) |
|
all_references.append(result["reference"]) |
|
|
|
# normalize predictions and references |
|
all_transcriptions = [transcription.replace(" ", "") for transcription in all_transcriptions] |
|
all_references = [reference.replace(" ", "") for reference in all_references] |
|
|
|
# compute the CER metric |
|
cer_metric = load("cer") |
|
cer = 100 * cer_metric.compute(predictions=all_transcriptions, references=all_references) |
|
print(cer) |
|
``` |
|
|
|
The huggingface links to the major Japanese ASR datasets for evaluation are summarized at [here](https://huggingface.co/collections/japanese-asr/japanese-asr-evaluation-dataset-66051a03d6ca494d40baaa26). |
|
For example, to evaluate the model on JSUT Basic5000, change the `dataset_name`: |
|
|
|
```diff |
|
- dataset_name = "japanese-asr/ja_asr.reazonspeech_test" |
|
+ dataset_name = "japanese-asr/ja_asr.jsut_basic5000" |
|
``` |
|
|
|
## Acknowledgements |
|
* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3). |
|
* Hugging Face π€ [Transformers](https://github.com/huggingface/transformers) for the model integration. |
|
* Hugging Face π€ for sharing the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper). |