|
--- |
|
license: apache-2.0 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
--- |
|
# {kornwtp/SCT-model-phayathaibert} |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
We use SCT [here](https://arxiv.org/abs/2311.03228) and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["กลุ่มผู้ชายเล่นฟุตบอลบนชายหาด", "กลุ่มเด็กชายกำลังเล่นฟุตบอลบนชายหาด"] |
|
|
|
model = SentenceTransformer('{MODEL_NAME}') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |